AM真菌在草地生态系统碳汇中的重要作用
张峰, 南志标, 闫飞扬, 李芳, 段廷玉*
草地农业生态系统国家重点实验,兰州大学草地农业科技学院,甘肃 兰州 730020
*通讯作者Corresponding author. E-mail:duanty@lzu.edu.cn

作者简介:张峰(1987-),男,甘肃武威人,在读硕士。E-mail:zhangf12@lzu.edu.cn

摘要

草地生态系统是陆地生态系统的重要组成部分,在全球碳储量中占有重要的地位,而广泛存在于草地生态系统中的丛枝菌根(arbuscular mycorrhizal,简称AM)真菌在草地生态系统的碳汇中起着重要的作用。本文从AM真菌功能多样性出发,从以下几个方面阐述AM真菌在草地生态系统碳汇中的作用:1)AM真菌对草地生态系统净初级生产力(NPP)的影响。2)AM真菌对土壤碳库变化的影响。3)AM真菌对CO2浓度升高和大气氮沉降增加的响应。4)草地放牧利用、管理措施等干扰影响AM真菌,从而对草地生态系统碳循环产生影响。综合分析了AM真菌在草地生态系统中的作用机制,旨在为准确全面地评估碳汇现状、测算固碳速率、预估碳储量和应对全球气候变化提供方法和参考依据。

关键词: AM真菌; 草地生态系统; 碳汇; 土壤呼吸; 氮沉降
The important role of arbuscular mycorrhizal fungi in carbon storage in grassland ecosystems
ZHANG Feng, NAN Zhi-Biao, YAN Fei-Yang, LI Fang, DUAN Ting-Yu*
State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
Abstract

Grassland ecosystems occupy an important position in global carbon storage. Arbuscular mycorrhizal fungi (AMF) exist widely in these grasslands and play a significant role in the ecosystem’s ability to act as carbon sinks. This paper summarizes this role from the perspective of the fungi’s functional diversity. It reviews, 1) the impact of AMF on the net primary productivity of grassland ecosystems, 2) their impact on variation in the soil carbon pool, 3) the response of AMF to elevated atmospheric CO2 and increased anthropogenic nitrogen deposition, and 4) how grazing management practices could affect AMF and therefore the carbon cycle of grassland systems. This review is undertaken in order to provide references for evaluating carbon sinks, calculating carbon fixation rates, predicting carbon storage and coping with global climate change.

Keyword: arbuscular mycorrhizal fungi (AM fungi); grassland ecosystems; carbon sink; soil respiration; nitrogen deposition
引言

草地生态系统是地球上分布面积最为广泛的陆地生态系统类型之一, 其面积占全球陆地面积的1/5[1], 其植物部分和土壤部分的碳储量占全球陆地生态系统的1/3, 在全球碳循环中扮演着极为重要的角色[2, 3, 4]。中国拥有丰富的草地资源, 主要分布在东北平原、内蒙古高原、黄土高原、青藏高原及新疆山地。其中, 天然草地总面积约为4.0× 108 hm2, 约占国土面积的41.7%[5] , 其面积约为我国耕地面积的2倍, 森林面积的3倍[6], 研究测得中国草地生物量碳密度以及土壤有机碳密度的平均值分别为300.2 g C/m2和8.5 kg C/m2, 采用目前最广泛使用的草地面积331× 104 km2, 估算得到中国草地生态系统碳储量约为29.1 Pg C[7]。草地生态系统是个巨大的碳库, 准确评估我国草地生态系统的碳储量、研究碳循环过程对气候变化的响应及其动态平衡机制等, 将有助于预测全球气候变化与草地生态系统之间的反馈调节机制以及草地资源合理利用和生态功能的可持续发挥[8, 9]

在草地生态系统中, 草地土壤的碳贮量约占草地总碳贮量的89.4%[10], 土壤碳库的碳储量以及稳定性直接影响着草地生态系统的碳循环。土壤有机碳中很大的比例直接来源于凋落物(包括地上部分的枯枝落叶以及地下根系的凋落物)和微生物, 有证据表明微生物的再合成在稳定有机碳形成中有重要作用, 在草原生态系统的物质循环和能量转化中占有重要地位[11, 12, 13]。据报道, 菌根真菌作为土壤-根系-微生物三者构成的微生态系统最重要的功能群之一, 其生物量约占生态系统微生物总量的70%[14]。最新研究[15]表明丛枝菌根(arbuscular mycorrhizal, 简称AM)真菌在土壤中封存了数量惊人的碳, 有着巨大的固碳潜力。为此, 本文从AM真菌在草地生态系统中的地位以及与碳汇源的关系出发, 综述了AM真菌对植物净初级生产力(NPP)、土壤碳库变化的影响以及AM真菌对CO2浓度升高和大气氮沉降增加、草地放牧利用和管理措施等外界扰动下响应的最新研究进展, 旨在说明AM真菌在草地生态系统碳汇源中的重要作用, 探讨全球变化下AM真菌在草地生态系统碳循环中的功能, 为研究我国草地生态系统的碳汇现状、固碳速率、固碳潜力及其机制的研究提供参考, 同时也为全球碳收支的准确评估和碳排放权的制定提供依据。

1 AM真菌在草地生态系统中地位和作用

AM真菌能够侵染植物根系, 与植物根系形成互惠共生体, 80%的维管植物都可以和AM真菌形成共生体[16], 是世界上分布最广泛的一类菌根类型, 也是土壤微生物区系的主要组成成员, 是生态系统中最重要的功能群之一[17], O’ Connor等[18]通过调查辛普森荒漠化草地植物时发现, 有73%的植物能与AM真菌形成共生体, 共形成28属52种菌种, 在草地生态系统中, AM真菌普遍存在。在对内蒙古草原地区常见植物根围AM真菌资源状况调查中发现, 多年生草本和灌木类植物被丛枝菌根真菌侵染的比例较高, 占被调查该类植物总数的90.4%[19], 共分离鉴定出AM真菌3属22种, 其中Acaulospora属2 种, Glomus 属19 种, Scutellospora属1 种[20]。在对毛乌素沙地5个不同生态条件下沙打旺(Astragalus adsurgens)根围土壤0~50 cm土层AM真菌空间分布进行研究发现, AM真菌在10~30 cm土层存在最高定殖率和最大孢子密度[21]。可见AM真菌在草地生态系统中广泛存在。

AM真菌作为草地生态系统重要的组成部分, 在实际研究工作中却没有引起足够地重视往往被研究者所忽视。AM真菌自身无法进行光合作用, 必须向宿主植物获取光合作用产物并将其转化为自身生物量储存起来。由于研究者所应用的方法、研究的对象、研究时间长短的不同, 有研究者测得AM真菌储存了寄主植物高达40%~60%的光合作用产物[22, 23, 24], 也有研究者估测AM真菌获取了寄主植物4%固碳量[25], 即使按Bevege等[26]的保守估计, 菌根真菌的生物量也与许多植物现存生物量相近, 这在草地生态系统中是绝对不可忽视的。

2 AM真菌与碳汇的关系

草地生态系统的植物通过光合作用固定CO2的同时, 通过土壤呼吸以及动植物的呼吸作用释放CO2, 当固定的CO2量大于释放的量, 草地生态系统被称为“ 碳汇” , 反之则为“ 碳源” [27]。土壤微生物作为生态系统中重要的分解者, 在对动植物残体以及土壤有机质降解的过程中, 一方面作为碳源将CO2释放到大气中, 是土壤碳排放的重要组成部分; 另一方面, 在分解的过程中, 形成了可供给植物利用的无机养分[28], 作为碳汇功能, 将碳重新固定下来(图1)。AM菌根作为土壤微生态系统的重要组分, 将来自植物光合作用产物的碳直接转运到土壤中并被封存起来[15], 然后一部分碳分配给菌根真菌, 用于构建扩展到土壤的菌丝网[29], 这些菌丝一旦死亡, 其组织中的碳可迅速被其他土壤微生物所分解, 或者保存在土壤中几年甚至数十年, 菌根碳保留在土壤中的时间越长, 对土壤碳封存的贡献就越大[30], 这部分碳占到植物净固碳量的9%~11%[31, 32]。另一部分以碳源的形式参与生态系统碳循环。可见, AM真菌在草地生态系统碳储量中起着重要的作用, 这也必将越来越引起人们的重视。

图1 AM真菌在草地生态系统碳汇中的作用Fig.1 The important role of arbuscular mycorrhizal fungi in carbon sink in grassland ecosystems

3 AM真菌对碳汇源的影响
3.1 AM真菌对草地生态系统净初级生产力(NPP)的影响

草地生态系统净初级生产力(NPP)是指单位时间、单位面积上草地植被光合产物与自养呼吸的差值, 它是草地生态系统最主要的碳输入方式[33]。AM真菌与植物形成共生体后, 明显改善了植物叶片的气孔导度和蒸腾速率, 提高了叶绿素含量、净光合速率, 促进植物根系对养分的吸收, 从而促进寄主植物的生长, 增加作物产量[29, 34, 35], 稳定并增加植物碳库。从表1可以看出:AM真菌直接影响着植物NPP。但也有研究发现AM真菌的这种促生作用与CO2浓度并不存在协同作用, 对植物根的重量和长度没有影响, 但它显著减小了根冠比, 增加了植物地上部分的生物量[47]。AM真菌通过提高植物的光合作用, 增加草地生态系统的NPP, 使更多的碳固定在草地生态系统中, 从而在缓和大气CO2浓度升高中发挥重要的作用, 对草地生态系统碳循环产生重要的影响。

表1 AM真菌对草地植物净初级生产力的影响 Table 1 AM fungi have a impact on net primary productivity of grassland plant
3.2 AM真菌对土壤碳库变化的影响

AM真菌在草地生态系统碳循环过程中, 一方面将来自植物光合作用产物的碳直接转运到土壤中并封存起来, 起到碳汇的作用[15], 另一方面作为活跃的分解者, 在扮演分解者角色的同时促进腐生微生物的分解活动, 起到碳源的作用[48]。土壤有机碳(soil organic carbon, SOC)储量主要受制于生物量C 的输入与土壤有机质分解-迁移速率的差值[49]。陆地生态系统的碳库包括植物和土壤两部分, 对于草地生态系统来说, 植物碳库相对比较稳定。因此, 草地生态系统的固碳潜力主要考虑土壤的固碳能力[50], 其主要受土壤结构、土壤呼吸和凋落物的影响, 而AM真菌具有改善土壤结构[51, 52], 提高土壤呼吸速率[53], 促进凋落物分解的功能[54]

AM真菌在改善土壤结构的一个重要的作用机制就是建立在进入土壤碳通量的基础上, 研究表明, AM真菌的菌丝对土壤团聚体结构的形成、土壤水稳性R0.25和保持土壤孔隙度等方面具有重要作用[51, 55], 其分泌的球囊霉素相关土壤蛋白(glomalin related soil protein, GRSP)作为一种土壤络合物进入土壤, 经过长期的黏着作用, 增加了团粒结构, 改善了土壤结构, 最终形成大团聚体增加土壤中的有机质含量, 储存更多的碳[56, 57, 58]

土壤呼吸作用作为草地生态系统向大气输出碳的主要途径, 是草地生态系统碳循环的重要组成部分[59], 主要包括植物根呼吸、土壤微生物呼吸和土壤动物呼吸三个生物学过程和一个含碳物质化学氧化非生物过程[60], 全球每年因土壤呼吸产生大约80.4 Pg C, 仅次于陆地总初级生产力(GPP)100~120 Pg C[61]。因此, 土壤呼吸很微小的变化就会导致大气CO2的显著增加或降低, 影响全球大气碳平衡[62, 63]。AM真菌在土壤真菌微生物中生物量最大[64], 影响土壤微生物呼吸的因素也将对AM真菌的呼吸产生变化。CO2浓度加倍试验表明高浓度CO2可能会抑制土壤微生物呼吸, 这可能与土壤表面高浓度的CO2阻碍了CO2的扩散速率有关[65], 也有人在美国加利福尼亚州的砂岩草原研究发现, CO2浓度加倍显著抑制了土壤微生物的呼吸, 这可能与CO2浓度加倍导致土壤可利用N的减少以及土壤微生物N限制有关[66]。所以, 关于CO2浓度升高时, AM真菌对土壤碳库的变化还有待进一步研究。

Clemmensen等[15]用数学模型将土壤碳储量划分为地上凋落物的碳和根及根相关真菌的碳。结果显示, 在深层土壤根密度最高的地方高达70%的土壤碳库是根派生的。该模型的研究结果通过分子生物学分析方法证明, 菌根和其他根相关的真菌封存着更深层的土壤碳库, 而分解者真菌只在浅层土壤碳库中比较丰富[30]。凋落物分解速率的快慢直接影响着土壤碳库的变化, 采用根袋的方法研究了接种两种AM真菌G. mosseaeG. claroideum对羊草(Leymus chinensis)地上部及根系凋落物降解的影响时发现, AM真菌间接地影响凋落物的分解和养分的释放[67]。在喀斯特地貌采用分室系统隔室装置对香樟(Cinnamomum camphora)幼苗进行幼套球囊霉(Glomus etunicatum)接种处理和施氮处理, 并采用15N 稳定同位素技术标记了黑麦草(Lolium perenne)枯落物作为土壤有机残体, 发现AM真菌促进土壤枯落物的分解, 具有腐生营养的能力[68]

3.3 AM真菌对CO2浓度升高和大气氮沉降增加的响应

土壤微生物的互作效应对土壤碳的循环有着重要作用, CO2浓度的升高影响着微生物的相互作用, 在转化过程中对营养供应和草地生态系统碳储量产生影响[69]。AM真菌的侵染率和菌丝生物量对CO2浓度升高的响应与菌根真菌种类、丰度、宿主植物以及氮素水平有着直接的关系[70, 71, 72], AM真菌的丛枝结构是共生体碳交流的主要位点[73], 有人研究报道CO2浓度的升高, 运转到根系的碳水化合物增加, 根际环境发生变化, AM真菌共生体的形成也发生变化, 进而影响到草地生态系统碳的变化[74]。CO2浓度升高为AM真菌提供碳源的同时, AM真菌也缓解了CO2浓度升高和大气氮沉降增加带来的气候变化[72]。我国被认为是大气氮沉降最严重的国家之一[75], 大气氮沉降的增加直接影响着草地生态系统碳循环。陈浩等[76]研究发现, 大气氮沉降增加是影响森林生态系统碳吸存的重要因素, 认为氮沉降促进森林生态系统碳吸存, 但是氮沉降所带来的森林生态系统碳吸存能力到底有多大还无法确定。一定条件下氮沉降增加, 有利于AM真菌的生长发育, 但超过一定水平则会抑制菌根真菌的生长发育, 这种影响与N、P 比例有关[77]。对于大部分AM真菌N沉降会降低侵染率, 但对一些特异的AM真菌, 施N 反而会增加侵染率, 过量的N沉降会导致AM真菌菌丝的减少[78], 也有研究发现, 在高CO2浓度和低N处理下, AM真菌侵染率提高14倍[79]。高CO2浓度有利于高纤维低氮植物生长而不利于低纤维高氮植物, 导致土壤中C/N升高, 而高C/N有利于真菌生长[80- 81] , C/N增加, 土壤氮的亏缺限制碳的固持[82], 这一切都表明, CO2浓度升高和大气氮沉降增加对AM真菌生长发育产生影响, 并随着C/N的变化产生协同作用。另外, 氮沉降以不同的形式将N输入到土壤中, 大部分AM真菌以NH4+-N形式利用N素, 非常有利于菌根的生长, 而对NO3--N吸收则相对较少, 则不利用其生长, 所以不同形态氮的输入也将对草地菌根的生长起着不同的作用[83, 84, 85]

3.4 放牧对AM真菌的影响

草地放牧利用、管理措施等干扰影响AM真菌, 从而对草地生态系统碳循环产生影响。目前大量实验观测表明, 由于过度放牧等原因导致的草地退化将造成土壤有机碳的损失[86, 87, 88], 而一些人类活动, 特别是人工种草、围封草场和退耕还草等措施可以促进草地土壤有机碳的恢复和积累, 具有固定大气CO2的能力[50]。与未放牧草地相比, 适度放牧增加土壤碳汇的效果[4, 89], 牧压较小的高寒草甸草原生态系统具有很好的碳截存能力, 但随着放牧强度的增大可能由碳汇[90]转向碳源[91]。对内蒙古草地不同放牧强度下AM真菌的变化研究发现, 随着放牧强度的增加, AM真菌对植物的侵染率显著降低, 其原因可能是过度放牧降低了植被种类和盖度, 因此, 向地下输送的碳不能满足大量AM真菌的需求, 从而降低AM真菌的侵染率[92, 93]。对于管理措施合理的草地, 施肥不仅可以有效补充过度放牧或利用带走的营养元素, 调节养分循环, 使得土壤有机碳含量增加, 还能增加AM真菌(Glomus)的数量, 提高活性[94, 95, 96, 97]。火干扰通过温度的变化直接刺激土壤微生物的活性, 同时由于火干扰灰分进入土壤, 增加土壤养分, 促进土壤微生物生长[98], 而数量却减少[99], 进而影响着土壤有机质的储存和分解。能够影响土壤微生物的因素也将对AM真菌起作用, 从而使得AM真菌对草地碳循环产生影响。

4 研究展望

AM真菌作为生态系统重要的功能群, 人们已经对AM真菌在草地生态系统碳循环中的重要性进行了一些基础性的研究, 取得了一定的进展, 但是关于AM真菌对土壤碳库的变化机制和作用机理还不全面和确定, 对碳循环的控制过程认识尚不统一, 对于草地“ 源-汇” 关系的评估仍具有较大的不确定性, 主要表现在以下几方面:

1)相对于森林生态系统碳循环的研究, 草地生态系统在这方面还十分匮乏[27], 草原作为我国最大的陆地生态系统, 约占全国土地面积的41%, 今后应加强草地生态系统碳汇源的研究工作和力度, 尤其是应重视土壤微生态系统对土壤碳变化的影响, 特别是菌根真菌的研究。

2)开展全国不同草原类型以及不同时间尺度动态的研究。任继周等[100]通过综合顺序分类法(CSCS)分析了1950-2000年和2001-2050年期间的草原类型演替及碳汇动态。证明中国草地的碳汇主体依次是冻原和高山草地、温带湿润草地、斯泰普草地和半荒漠草地大类, 占中国潜在草地总面积的85.52%, 年碳汇潜力占中国潜在草地年碳汇潜力的93.29%。不同草地类型不同时间尺度其草地植被种类, 菌根真菌种群多样性和群落组成差别都很大, 所以碳储量也存在很大差别。

3)运用分子生物学技术, 如:外源基因标记、PCR— RFLP 和DNA 指纹图谱以及已开始运用的第二代测序技术454 焦磷酸测序技术, 对不同草地生态系统中的AM真菌多样性及其影响因子进行系统的研究[101], 为进一步深入和全面地调控以及应用AM真菌对土壤碳库变化的作用, 提供理论依据和技术支持。

4)AM真菌对P吸收、利用、转运的机制已经研究的较透彻, 尤其对在AM真菌吸收土壤中P的分子基础和基因调控方面[102, 103], 但对C代谢和N代谢研究还甚少, 尤其是对C和N协同作用于碳循环方面。

5)探索适合估算草地生态系统碳储量的模型, 目前在研究菌根真菌对森林生态系统碳封存中, 有人就结合分子条码(molecular barcode)技术和14C炸弹碳模型(bomb-carbon modeling)对研究起到了很大帮助, 问题也得以解决[15]。其中较为著名的CENTURY模型是基于实测数据和遥感数据得到的模型, Parton等[104]也已经使用此模型估算得出了美国大平原地区的土壤碳储量。GIS估算法作为一种新的有效的土壤碳储量估算方法, 在草地生态系统中探索运用GIS技术、碳循环模型和RS技术相结合的方法, 模拟大尺度上草地生态系统土壤碳储量, 将成为未来研究的主要方向[105]

综上所述, 通过深入研究和挖掘菌根真菌在碳循环中生态功能, AM真菌在应对全球气候变化中将有可能发挥重要的作用。

The authors have declared that no competing interests exist.

参考文献
[1] Yu G R, Li H T, Wang S Q. Terrestrial Ecosystem Carbon Cycle and Carbon Accumulation on Global Change[M]. Beijing: Meteorological Press, 2003. [本文引用:1]
[2] Scurlock J M O, Johnson K, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 2002, 8(8): 736-753. [本文引用:1] [JCR: 6.91]
[3] Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangeland s. Environmental Pollution, 2002, 116(3): 457-463. [本文引用:1] [JCR: 3.73]
[4] Schuman G E, Janzen H H, Herrick J E. Soil carbon dynamics and potential carbon sequestration by rangeland s. Environmental Pollution, 2002, 116(3): 391-396. [本文引用:2] [JCR: 3.73]
[5] Kang L, Han X G, Zhang Z B, et al. Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362: 997-1008. [本文引用:1] [JCR: 6.23]
[6] Ren J Z. Grassland Agriculture Ecology[M]. Beijing: China Agricultural Press, 1995: 1. [本文引用:1]
[7] Fang J Y, Yang Y H, Ma W H, et al. Carbon sink and its transformation by grassland ecosystems in China. Scientia Sinica(Vitae), 2010, (7): 566-576. [本文引用:1]
[8] Yang Y H, Fang J Y, Ma W H, et al. Soil carbon stock and its changes in northern China’s grassland s from 1980s to 2000s. Global Change Biology, 2010, 16(11): 3036-3047. [本文引用:1] [JCR: 6.91]
[9] Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grassland s. Global Change Biology, 2008, 14(7): 1592-1599. [本文引用:1] [JCR: 6.91]
[10] Ajtay G L, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass. The Global Carbon Cycle, 1979, 13: 129-182. [本文引用:1]
[11] Lützow M V, Kögel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review. European Journal of Soil Science, 2006, 57(4): 426-445. [本文引用:1] [JCR: 2.651]
[12] Six J, Frey S D, Thiet R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 2006, 70(2): 555-569. [本文引用:1] [JCR: 1.821]
[13] Wendu R L, Li G, Zhang J N, et al. The study of soil microbial biomass and soil enzyme avtivity on different grassland in Hulunbeier, Inner Mongolia. Acta Prataculturae Sinica, 2010, 19(5): 94-102. [本文引用:1]
[14] Zhu J J, Xu H, Xu M L, et al. Review on the ecological relationships between forest trees and ectomycorrhizal fungi. Chinese Journal of Ecology, 2003, 22(6): 70-76. [本文引用:1]
[15] Clemmensen K E, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 2013, 339(6127): 1615-1618. [本文引用:5]
[16] Smith S E, Read D J. Mycorrhizal Symbiosis[M]. Amsterdam, the Netherland s & Boston, MA, USA: Academic Press, 2008. [本文引用:1]
[17] Willis A, Rodrigues B F, Harris P J C. The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 2013, 32(1): 1-20. [本文引用:1] [JCR: 4.356]
[18] O’Connor P J, Smith S E, Smith F A. Arbuscular mycorrhizal associations in the southern Simpson Desert. Australian Journal of Botany, 2001, 49(4): 493-499. [本文引用:1] [JCR: 1.204]
[19] Bao Y Y, Yan W. Arbuscular mycorrhizae and their structural types on common plants in grassland s of mid-western Inner Mongolia. Chinese Biodiversity, 2004, 12(5): 501-508. [本文引用:1]
[20] BaoY Y, Yan W, Zhang M Q. Arbuscular mycorrhizal fungi associated with common plants in grassland of Inner Mongolia. Mycosystema, 2007, 26(1): 51-58. [本文引用:1]
[21] He X L, Bai C M, Zhao L L. Spatial distribution of arbuscular mycorrhizal fungi in Astragalus adsurgens root-zone soil in Mu Us sand land . Chinese Journal of Applied Ecology, 2008, (12): 2711-2716. [本文引用:1]
[22] Fogel R, Hunt G. Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Canadian Journal of Forest Research, 1979, 9(2): 245-256. [本文引用:1] [JCR: 1.559]
[23] Nicolson T H, Johnston C. Mycorrhiza in the Gramineae: III. Glomus fasciculatus as the endophyte of pioneer grasses in a maritime sand dune. Transactions of the British Mycological Society, 1979, 72(2): 261-268. [本文引用:1]
[24] Stribley D P, Tinker P B, Rayner J H. Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizas. New Phytologist, 1980, 86(3): 261-266. [本文引用:1] [JCR: 6.736]
[25] Paul E A, Kucey R M N. Carbon flow in plant microbial associations. Science, 1981, 213(4506): 473-474. [本文引用:1]
[26] Bevege D I, Bowen G D, Skinner M F. Comparative Carbohydrate Physiology of Ecto-and Endomycorrhizas[C]. Endomycorrhizas; Proceedings of a Symposium, 1975. [本文引用:1]
[27] Zhang Y J, Yang G W, Liu N, et al. Review of grassland management practices for carbon sequestration. Acta Prataculturae Sinica, 2013, 22(2): 290-299. [本文引用:2]
[28] Tao N, Zhang X Y, Zeng H, et al. Seasonal characteristics of soil CO2 efflux and carbon and nitrogen cycling induced by microorganisms in snow-covered and frozen soil system. Microbiology China, 2013, 40(1): 146-157. [本文引用:1]
[29] Hoeksema J D, Chaudhary V B, Gehring C A, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13(3): 394-407. [本文引用:2] [JCR: 17.949]
[30] Treseder K K, Holden S R. Fungal carbon sequestration. Science, 2013, 339(6127): 1528-1529. [本文引用:2]
[31] Johnson D, Leake J R, Read D J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland : short-term respiratory losses and accumulation of 14C. Soil Biology and Biochemistry, 2002, 34(10): 1521-1524. [本文引用:1] [JCR: 3.654]
[32] Domanski G, Kuzyakov Y, Siniakina S, et al. Carbon flows in the rhizosphere of ryegrass (Lolium perenne). Journal of Plant Nutrition and Soil Science, 2001, 164(4): 381-387. [本文引用:1] [JCR: 1.38]
[33] Fan Y J, Hou X Y, Shi H X, et al. Effect of carbon cycling in grassland ecosystems on climate warming. Acta Prataculturae Sinica, 2012, 21(3): 294-302. [本文引用:1]
[34] Smith S E, Smith F A, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 2003, 133(1): 16-20. [本文引用:1] [JCR: 6.555]
[35] Yang H X, Liu R J, Guo S X. Effects of arbuscular mycorrhizal fungus Glomus mossese on the growth characteristics of Festuca arundinacea under salt stress conditions. Acta Prataculturae Sinica, 2014, 23(4): 195-203. [本文引用:1]
[36] Shi W Q, Ding X D, Zhang S R. Effects of arbuscular mycorrhizal fungi on Leymus chinensis growth and soil carbon. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(2): 357-362. [本文引用:1]
[37] Hetrick B A D, Wilson G W T, Hartnett D C. Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany, 1989, 67(9): 2608-2615. [本文引用:1] [JCR: 1.397]
[38] Rouhier H, Read D J. The role of mycorrhiza in determining the response of Plantago lanceolata to CO2 enrichment. New Phytologist, 1998, 139(2): 367-373. [本文引用:1] [JCR: 6.736]
[39] Ye S P, Zeng X H, Xin G R, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels. Acta Prataculturae Sinica, 2013, 22(1): 46-52. [本文引用:1]
[40] Hetrick B D, Kitt D G, Wilson G T. Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Canadian Journal of Botany, 1988, 66(7): 1376-1380. [本文引用:1] [JCR: 1.397]
[41] Qin H B, He C X, Zhang Z B, et al. The effects of arbuscular mycorrhizal fungi on the growth of cucumber in greenhouse. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2007, 28(3): 69-72. [本文引用:1]
[42] Wang R Z, He C X, Wang H S, et al. Effect of AM fungi on the yield and nutrient quality of different muskmelon varieties in greenhouse. Acta Horticulturae Sinica, 2010, 37(11): 1767-1774. [本文引用:1]
[43] Zhang S B, Wang H J, Wang Y S, et al. Effects of the different substrates on the growth of cucumber and infection of arbuscular mycorrhizal fungi. Chinese Agricultural Science Bulletin, 2011, 27(10): 275-279. [本文引用:1]
[44] McHugh J M, Dighton J. Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois. and Spartina cynosuroides (L. ) Roth. , in nursery systems. Restoration Ecology, 2004, 12(4): 533-545. [本文引用:1] [JCR: 1.764]
[45] Huang D, Sang W G, Zhu L, et al. Effects of nitrogen and carbon addition and arbuscular mycorrhiza on alien invasive plant Ambrosia artemisiifolia. The Journal of Applied Ecology, 2010, 21(12): 3056-3062. [本文引用:1]
[46] Zhang Y F, Fen G, Li X L. The effect of arbuscular mycorrhizal fungi on the components and concentrations of organic acids in the exudates of mycorrhizal red clover. Acta Ecologica Sinica, 2003, 23(1): 30-37. [本文引用:1]
[47] Gavito M E, Curtis P S, Mikkelsen T N, et al. Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L. ) plants. Journal of Experimental Botany, 2000, 51(352): 1931-1938. [本文引用:1] [JCR: 5.242]
[48] Setälä H. Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza. Oecologia, 2000, 125(1): 109-118. [本文引用:1] [JCR: 3.011]
[49] Amundson R. The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 2001, 29(1): 535-562. [本文引用:1] [JCR: 8.833]
[50] Guo R, Wang X K, Lu F, et al. Soil carbon sequestration and its potential by grassland ecosystems in China. Acta Ecologica Sinica, 2008, 28(2): 0862-0867. [本文引用:2]
[51] Peng S L, Shen H, Zhang Y T, et al. Compare different effect of arbuscular mycorrhizal colonization on soil structure. Acta Ecologica Sinica, 2012, 32(3): 863-870. [本文引用:2]
[52] Van Der Heijden M G A, Streitwolf-Engel R, Riedl R, et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland . New Phytologist, 2006, 172(4): 739-752. [本文引用:1] [JCR: 6.736]
[53] Martin C A, Stutz J C. Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza, 2004, 14(4): 241-244. [本文引用:1] [JCR: 2.955]
[54] Tu C, Booker F L, Watson D M, et al. Mycorrhizal mediation of plant N acquisition and residue decomposition: impact of mineral N inputs. Global Change Biology, 2006, 12(5): 793-803. [本文引用:1] [JCR: 6.91]
[55] Bever J D, Schultz P A, Pringle A, et al. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why: The high diversity of ecologically distinct species of arbuscular mycorrhizal fungi within a single community has broad implications for plant ecology. Bioscience, 2001, 51(11): 923-932. [本文引用:1] [JCR: 4.739]
[56] Quintero-Ramos M, Espinoza-Victoria D, Ferrera-Cerrato R, et al. Fitting plants to soil through mycorrhizal fungi: mycorrhiza effects on plant growth and soil organic matter. Biology and Fertility of Soils, 1993, 15(2): 103-106. [本文引用:1] [JCR: 2.505]
[57] Miller R M, Jastrow J D. Mycorrhizal Fungi Influence Soil Structure, in Arbuscular Mycorrhizas: Physiology and Function[M]. Berlin, Germany: Springer Netherland s, 2000: 3-18. [本文引用:1]
[58] Peng X H, Zhang B, Zhao Q G. A review on relationship between soil organic carbon pools and soil structure stability. Acta Pedologica Sinica, 2004, 41(4): 618-623. [本文引用:1]
[59] Chen B Y, Liu S R, Ge J P, et al. The relationship between soil respiration and the temperature at different soil depths in subalpine coniferous forest of western Sichuan Province. Chinese Journal of Applied Ecology, 2007, 18(6): 1219-1224. [本文引用:1]
[60] Yang Y, Han G D, Li Y H, et al. Response of soil respiration to grazing intensity, water contents, and temperature of soil in different grassland s of Inner Mongolia. Acta Prataculturae Sinica, 2012, 21(6): 8-14. [本文引用:1]
[61] Raich J W, Tufekciogul A. Vegetation and soil respiration: correlations and controls. Biogeochemistry, 2000, 48(1): 71-90. [本文引用:1] [JCR: 3.531]
[62] Kane E S, Valentine D W, Schuur E A G, et al. Soil carbon stabilization along climate and stand productivity gradients in black spruce forests of interior Alaska. Canadian Journal of Forest Research, 2005, 35(9): 2118-2129. [本文引用:1] [JCR: 1.559]
[63] Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, 48(1): 7-20. [本文引用:1] [JCR: 3.531]
[64] Chen W X. Soil and Environmental Microbiology[M]. Beijing: China Agricultural University Press, 1990: 18-43. [本文引用:1]
[65] Zhou Y M, Han S J, Xin L H. Soil respiration of Pinus koraiensis and P. sylvestriformis trees growing at elevated CO2 concentration. Chinese Journal of Applied Ecology, 2006, 17(9): 1757-1760. [本文引用:1]
[66] Hu S, Chapin F S, Firestone M, et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature, 2001, 409(6817): 188-191. [本文引用:1] [JCR: 38.597]
[67] Li H, Li X L, Xiang D. Role of arbuscular mycorrhzizal fungi in Leymus chinensis litter decomposition. Ecology and Environmental Sciences, 2010, 19(7): 1569-1573. [本文引用:1]
[68] He Y J, Zhong Z C, Dong M. Nutrients transfer for host plant and litter decompositon by AMF in Karst soil. Acta Ecologica Sinica, 2012, 32(8): 2525-2531. [本文引用:1]
[69] Pregitzer K S, Zak D R, Loya W M, et al. The Contribution of Root-rhizosphere Interactions to Biogeochemical Cycles in a Changing World[M]. The Rhizosphere: An Ecological Perspective, 2007: 155-178. [本文引用:1]
[70] Berntson G M, Wayne P M, Bazzaz F A. Below-ground architectural and mycorrhizal responses to elevated CO2 in Betula alleghaniensis populations. Functional Ecology, 1997, 11(6): 684-695. [本文引用:1] [JCR: 4.861]
[71] Rillig M C, Wright S F, Kimball B A, et al. Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Global Change Biology, 2001, 7(3): 333-337. [本文引用:1] [JCR: 6.91]
[72] Johnson N C, Wolf J, Koch G W. Interactions among mycorrhizae, atmospheric CO2 and soil N impact plant community composition. Ecology Letters, 2003, 6(6): 532-540. [本文引用:2] [JCR: 17.949]
[73] Smith S E, Read D G. Mycorrhizal Symbiosis[M]. Amsterdam, the Netherland s & Boston, MA, USA: Academic Press, 1996. [本文引用:1]
[74] Chen J, Chen X, Tang J J. Influence of elevated atmospheric CO2 on rhizosphere microbes and arbuscular mycorrhizae. Chinese Journal of Applied Ecology, 2004, 15(12): 2388-2392. [本文引用:1]
[75] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320: 889-892. [本文引用:1]
[76] Chen H, Mo J M, Zhang W, et al. The effects of nitrogen deposition on forest carbon sequestration. Acta Ecologica Sinica, 2012, 32(21): 6864-6879. [本文引用:1]
[77] Kårén O, Nylund J E. Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Canadian Journal of Botany, 1997, 75(10): 1628-1642. [本文引用:1] [JCR: 1.397]
[78] Gao T P. Response of mycorrhizal fungi to CO2 rising and N deposition. Journal of Desert Research, 2009, 29(1): 131-135. [本文引用:1]
[79] Rillig M C, Allen M F, Klironomos J N, et al. Arbuscular mycorrhizal percent root infection and infection intensity of bromus hordeaceus grown in elevated atmospheric CO2. Mycologia, 1998, 90(2): 199-205. [本文引用:1] [JCR: 2.11]
[80] Sun L J, Qi Y C, Dong Y S, et al. Research progresses on the effects of global change on microbial community diversity of grassland soils. Progress in Geography, 2012, 31(12): 1715-1723. [本文引用:1]
[81] Chung H, Zak D R, Reich P B, et al. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, 13(5): 980-989. [本文引用:1] [JCR: 6.91]
[82] Piñeiro G, Paruelo J M, Oesterheld M, et al. Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecology & Management, 2010, 63(1): 109-119. [本文引用:1]
[83] Zhang Y, Cui X M, Fan M S. Atmospheric N deposition and its influences on the grassland biodiversity. Pratacultural Science, 2007, 24(7): 12-17. [本文引用:1]
[84] Yoshida L C, Allen E B. Response to ammonium and nitrate by a mycorrhizal annual invasive grass and native shrub in southern California. American Journal of Botany, 2001, 88(8): 1430-1436. [本文引用:1] [JCR: 2.586]
[85] Heil G W, Werger M J A, De Mol W, et al. Capture of atmospheric ammonium by grassland canopies. Science, 1988, 239(4841): 764-765. [本文引用:1]
[86] Fernand ez D P, Neff J C, Reynolds R L. Biogeochemical and ecological impacts of livestock grazing in semi-arid southeastern Utah, USA. Journal of Arid Environments, 2008, 72(5): 777-791. [本文引用:1] [JCR: 1.772]
[87] Bagchi S, Ritchie M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters, 2010, 13(8): 959-968. [本文引用:1] [JCR: 17.949]
[88] Li L H, Liu X H, Chen Z Z. Study on the carbon cycle of Leymus chinensis steppe in the Xilin River basin. Acta Botanica Sinica, 1998, 40(10): 955-961. [本文引用:1] [JCR: 0.599]
[89] Kareiva P. Diversity and sustainability on the prairie. Nature, 1996, 379: 673-674. [本文引用:1] [JCR: 38.597]
[90] Cao G M, Xu X L, Long R J, et al. Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau. Biology Letters, 2008, 4(6): 681-684. [本文引用:1] [JCR: 3.348]
[91] Hirota M, Tang Y, Hu Q, et al. The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai-Tibetan Plateau. Atmospheric Environment, 2005, 39(29): 5255-5259. [本文引用:1] [JCR: 3.11]
[92] Su Y Y, Guo L D. Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza, 2007, 17(8): 689-693. [本文引用:1]
[93] Medina-Roldán E, Arredondo J T, Huber-Sannwald E, et al. Grazing effects on fungal root symbionts and carbon and nitrogen storage in a shortgrass steppe in Central Mexico. Journal of Arid Environments, 2008, 72(4): 546-556. [本文引用:1] [JCR: 1.772]
[94] Liebig M A, Gross J R, Kronberg S L, et al. Soil response to long-term grazing in the northern Great Plains of North America. Agriculture, Ecosystems & Environment, 2006, 115(1): 270-276. [本文引用:1]
[95] Johnson N C. Can fertilization of soil select less mutualistic mycorrhizae. Ecological Applications, 1993, 3(4): 749-757. [本文引用:1]
[96] Sikora L J, McCoy J L. Attempts to determine available carbon in soils. Biology and Fertility of Soils, 1990, 9(1): 19-24. [本文引用:1] [JCR: 2.505]
[97] Hatch D J, Lovell R D, Antil R S, et al. Nitrogen mineralization and microbial activity in permanent pastures amended with nitrogen fertilizer or dung. Biology and Fertility of Soils, 2000, 30(4): 288-293. [本文引用:1] [JCR: 2.505]
[98] Christensen N L. The effects of fire on physical and chemical properties of soils in Mediterranean-climate shrubland s. The Role of Fire in Mediterranean-type Ecosystems, 1994, 107: 79-95. [本文引用:1] [JCR: 3.165]
[99] Wang H Q, Guo A X, Di X Y. Immediate changes in soil organic carbon and microbial biomass carbon after an experimental fire in great xing’an mountains. Journal of Northeast Forestry University, 2011, 39(5): 573-576. [本文引用:1]
[100] Ren J Z, Liang T G, Lin H L, et al. Study on grassland ’s responses to global climate change and its carbon sequestration potentials. Acta Prataculturae Sinica, 2011, 20(2): 1-22. [本文引用:1]
[101] Lin S S, Sun X W, Wang X J, et al. Mycorrhizal studies and their application prospects in China. Acta Prataculturae Sinica, 2013, 22(5): 310-325. [本文引用:1]
[102] Li H, Smith S E, Holloway R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist, 2006, 172(3): 536-543. [本文引用:1] [JCR: 6.736]
[103] Jin H R, Jiang X Y. Recent advances in the studies of nitrogen metabolism and translocation in arbuscular mycorrhizal fungi. Mycosystema, 2009, 28(3): 466-471. [本文引用:1]
[104] Parton W J, Cole C V, Stewart J W B, et al. Simulating regional patterns of soil C, N, and P dynamics in the US central grassland s region. Ecology of Arable Land —Perspectives and Challenges, 1989, 39: 99-108. [本文引用:1]
[105] Chen P F, Wang J L, Wang X M, et al. Research progress in estimating carbon storage of forest ecosystem. Forest Inventory and Planning, 2009, 34(6): 39-45. [本文引用:1] [CJCR: 0.4315]
[1] 于贵瑞, 李海涛, 王绍强. 全球变化与陆地生态系统碳循环和碳蓄积[M]. 北京: 气象出版社, 2003. [本文引用:1]
[6] 任继周. 草地农业生态学[M]. 北京: 中国农业出版社, 1995: 1. [本文引用:1]
[7] 方精云, 杨元合, 马文红, . 中国草地生态系统碳库及其变化. 中国科学: 生命科学, 2010, (7): 566-576. [本文引用:1]
[13] 文都日乐, 李刚, 张静妮, . 呼伦贝尔不同草地类型土壤微生物量及土壤酶活性研究. 草业学报, 2010, 19(5): 94-102. [本文引用:1]
[14] 朱教君, 徐慧, 许美玲, . 外生菌根菌与森林树木的相互关系. 生态学杂志, 2003, 22(6): 70-76. [本文引用:1]
[19] 包玉英, 闫伟. 内蒙古中西部草原主要植物的丛枝菌根及其结构类型研究. 生物多样性, 2004, 12(5): 501-508. [本文引用:1]
[20] 包玉英, 闫伟, 张美庆. 内蒙古草原常见植物根围AM真菌. 菌物学报, 2007, 26(1): 51-58. [本文引用:1]
[21] 贺学礼, 白春明, 赵丽莉. 毛乌素沙地沙打旺根围AM真菌的空间分布. 应用生态学报, 2008, (12): 2711-2716. [本文引用:1]
[27] 张英俊, 杨高文, 刘楠, . 草原碳汇管理对策. 草业学报, 2013, 22(2): 290-299. [本文引用:2]
[28] 陶娜, 张馨月, 曾辉, . 积雪和冻结土壤系统中的微生物碳排放和碳氮循环的季节性特征. 微生物学通报, 2013, 40(1): 146-157. [本文引用:1]
[33] 范月君, 侯向阳, 石红霄, . 气候变暖对草地生态系统碳循环的影响. 草业学报, 2012, 21(3): 294-302. [本文引用:1]
[35] 杨海霞, 刘润进, 郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响. 草业学报, 2014, 23(4): 195-203. [本文引用:1]
[36] 石伟琦, 丁效东, 张士荣. 丛枝菌根真菌对羊草生物量和氮磷吸收及土壤碳的影响. 西北植物学报, 2011, 31(2): 357-362. [本文引用:1]
[39] 叶少萍, 曾秀华, 辛国荣, . 不同磷水平下丛枝菌根真菌 (AMF) 对狗牙根生长与再生的影响. 草业学报, 2013, 22(1): 46-52. [本文引用:1]
[41] 秦海滨, 贺超兴, 张志斌, . 丛枝菌根真菌对温室有机土栽培黄瓜的作用研究. 内蒙古农业大学学报(自然科学版), 2007, 28(3): 69-72. [本文引用:1]
[42] 王锐竹, 贺超兴, 王怀松, . 丛枝菌根真菌对不同甜瓜品种产量及营养品质的影响. 园艺学报, 2010, 37(11): 1767-1774. [本文引用:1]
[43] 张淑彬, 王红菊, 王幼珊, . 不同育苗基质对黄瓜生长及丛枝菌根真菌侵染的影响. 中国农学通报, 2011, 27(10): 275-279. [本文引用:1]
[46] 张玉凤, 冯固, 李晓林. 丛枝菌根真菌对三叶草根系分泌的有机酸组分和含量的影响. 生态学报, 2003, 23(1): 30-37. [本文引用:1]
[50] 郭然, 王效科, 逯非, . 中国草地土壤生态系统固碳现状和潜力. 生态学报, 2008, 28(2): 0862-0867. [本文引用:2]
[51] 彭思利, 申鸿, 张宇亭, . 不同丛枝菌根真菌侵染对土壤结构的影响. 生态学报, 2012, 32(3): 863-870. [本文引用:2]
[58] 彭新华, 张斌, 赵其国. 土壤有机碳库与土壤结构稳定性关系的研究进展. 土壤学报, 2004, 41(4): 618-623. [本文引用:1]
[59] 陈宝玉, 刘世荣, 葛剑平, . 川西亚高山针叶林土壤呼吸速率与不同土层温度的关系. 应用生态学报, 2007, 18(6): 1219-1224. [本文引用:1]
[60] 杨阳, 韩国栋, 李元恒, . 内蒙古不同草原类型土壤呼吸对放牧强度及水热因子的响应. 草业学报, 2012, 21(6): 8-14. [本文引用:1]
[64] 陈文新. 土壤和环境微生物[M]. 北京: 中国农业大学出版社, 1990: 18-43. [本文引用:1]
[65] 周玉梅, 韩士杰, 辛丽花. CO2浓度升高对红松和长白松土壤呼吸作用的影响. 应用生态学报, 2006, 17(9): 1757-1760. [本文引用:1]
[67] 李欢, 李晓林, 向丹. 丛枝菌根真菌对羊草凋落物降解作用的研究. 生态环境学报, 2010, 19(7): 1569-1573. [本文引用:1]
[68] 何跃军, 钟章成, 董鸣. AMF 对喀斯特土壤枯落物分解和对宿主植物的养分传递. 生态学报, 2012, 32(8): 2525-2531. [本文引用:1]
[74] 陈静, 陈欣, 唐建军. 大气二氧化碳浓度升高对植物根际微生物及菌根共生体的影响. 应用生态学报, 2004, 15(12): 2388-2392. [本文引用:1]
[76] 陈浩, 莫江明, 张炜, . 氮沉降对森林生态系统碳吸存的影响. 生态学报, 2012, 32(21): 6864-6879. [本文引用:1]
[78] 高天鹏. 菌根真菌对CO2浓度升高和 N 沉降的响应. 中国沙漠, 2009, 29(1): 131-135. [本文引用:1]
[80] 孙良杰, 齐玉春, 董云社, . 全球变化对草地土壤微生物群落多样性的影响研究进展. 地理科学进展, 2012, 31(12): 1715-1723. [本文引用:1]
[83] 张燕, 崔学民, 樊明寿. 大气氮沉降及其对草地生物多样性的影响. 草业科学, 2007, 24(7): 12-17. [本文引用:1]
[99] 王海淇, 郭爱雪, 邸雪颖. 大兴安岭林火点烧对土壤有机碳和微生物量碳的即时影响. 东北林业大学学报, 2011, 39(5): 573-76. [本文引用:1]
[100] 任继周, 梁天刚, 林慧龙, . 草地对全球气候变化的响应及其碳汇潜势研究. 草业学报, 2011, 20(2): 1-22. [本文引用:1]
[101] 林双双, 孙向伟, 王晓娟, . 我国菌根学研究进展及其应用展望. 草业学报, 2013, 22(5): 310-325. [本文引用:1]
[103] 金海如, 蒋湘艳. AM 真菌氮代谢与运转研究新进展. 菌物学报, 2009, 28(3): 466-471. [本文引用:1]
[105] 程鹏飞, 王金亮, 王雪梅, . 森林生态系统碳储量估算方法研究进展. 林业调查规划, 2009, 34(6): 39-45 [本文引用:1] [CJCR: 0.4315]