氮肥运筹对陇中旱农区玉米光合特性及产量的影响
王进斌, 谢军红, 李玲玲*, Eunice Essel, 彭正凯, 邓超超, 沈吉成, 颉健辉
甘肃省干旱生境作物学重点实验室,甘肃农业大学农学院,甘肃 兰州 730070
*通信作者:E-mail: lill@gsau.edu.cn

作者简介:王进斌(1993-), 男, 甘肃天祝人,在读硕士。E-mail: 1335794569@qq.com

摘要

全膜双垄沟播技术使玉米成为了陇中旱农区主要作物之一,但该技术下玉米的高产出导致土壤养分耗竭,影响玉米生产的可持续性。本研究依托2012年布设在陇中旱农区的田间定位试验,研究4个施氮水平 (N0:不施肥;N1:100 kg·hm-2、N2:200 kg·hm-2、N3:300 kg·hm-2)和2个施氮时期(T1: 1/3基肥+1/3拔节期+1/3开花期、T2: 1/3基肥+2/3拔节期)对玉米光合特性、叶绿素含量、叶面积指数、干物质积累和分配量及产量的影响。结果表明:1) 随着施氮量的增加玉米光合性能也在增强,而N3和T2N2间差异不显著,T2时期提高玉米光合特性;2) 全生育期内,N3处理下叶绿素含量较N2、N1、N0分别平均增加50.9%、17.0%、2.7%;叶面积指数也随施氮量的增加而增加,但N2和N3间无显著差异;T2下的叶绿素含量和叶面积指数在生育后期显著高于T1;3) 干物质积累量和籽粒分配量表现为:N3>N2>N1>N0,T2下的干物质积累和籽粒分配量高于T1;4) 籽粒产量和生物产量均随施氮量的增加而增加,N2和N3下的籽粒产量和生物产量显著高于N0,其中N3较N0增加79.2%和68.4%,N2较N0增加65.9%和54.1%,T2下的籽粒产量和生物产量分别较T1显著增加9.9%和13.5%,而T2N2与N3间无显著差异,因此,在陇中旱农区应用全膜双垄沟播技术种植玉米,施纯氮200 kg·hm-2左右,按照1/3基肥+2/3拔节期配施,可以增强光合作用,从而提高玉米籽粒产量和饲料产量,促进玉米生产可持续发展。

关键词: 施氮量; 施氮时期; 玉米; 光合特性; 产量
Effects of nitrogen management on photosynthetic characteristics and yield of maize in arid areas of central Gansu, China
WANG Jin-bin, XIE Jun-hong, LI Ling-ling*, Eunice Essel, PENG Zheng-kai, DENG Chao-chao, SHEN Ji-cheng, XIE Jian-hui
Gansu Provincial Key Lab of Arid Land Crop Sciences, Agronomy College, Gansu Agricultural University,Lanzhou 730070, China
*Corresponding author:E-mail: lill@gsau.edu.cn
Abstract

Maize has become one of the major cultivated crops in arid farming areas of central Gansu, China because of the adoption of complete film surface mulching and adoption of double ridge-furrow planting. However, the high output of maize using this technology results in exhaustion of soil nutrients negatively influencing the sustainability of maize production. The objective of this study was to determine the effects of different nitrogen application rates on the photosynthetic characteristics, chlorophyll content (SPAD), leaf area index, dry matter accumulation and distribution and yield of maize. The study relied on a field experiment that was conducted in 2012 at Dingxi, Longzhong region. The treatments included four nitrogen rates (N0: 0 kg·ha-1, N1: 100 kg·ha-1, N2: 200 kg·ha-1, N3: 300 kg·ha-1) and two nitrogen application times (T1: 1/3 at sowing+1/3 at jointing+1/3 at flowering, T2: 1/3 at sowing+2/3 at jointing). The photosynthetic characteristics improved with increased nitrogen application rate, but there was no difference between T2N2 and N3; T2 enhanced the photosynthetic characteristics. N3 increased SPAD by 50.9%, 17.0%, and 2.7% respectively comparing N0, N1, and N2 at all stages. Leaf area index also improved with increased nitrogen application rate, but N2 and N3 were not different. SPAD and leaf area index under T2 were higher than T1. Dry matter during all growth stages was highest at N3 and lowest at N0 (N3>N2>N1>N0) and T2 was higher than T1. Grain yield and biomass were significantly higher with increased nitrogen rates; for example, grain yield and biomass were 79.2% and 68.4% higher for N3 than N0 respectively, and 65.9% and 51.4% higher for N2 than N0 respectively. T2 improved grain yield and biomass by 9.9% and 13.5% respectively, compared with T1. However, T2N2 and N3 were not different. The application of double furrow sowing technology, mulching with nitrogen applied at 200 kg·ha-1 rate, 1/3 applied at sowing+2/3 at jointing is suggested as a means of more sustainable maize production systems in arid areas of central Gansu, China.

Keyword: nitrogen rates; nitrogen application time; maize; photosynthetic characteristics; yield

玉米(Zea mays)是世界上最具潜力的粮饲兼用型作物, 其不仅可以保障粮食安全, 而且还可以缓解饲料短缺[1], 目前, 我国玉米70%以上用作饲料[2]。陇中旱农区由于多变亏水、热量有限[3], 导致露地玉米不能成熟。全膜双垄沟播技术的应用突破了玉米种植的水热限制, 显著增加玉米产量和提高水分利用效率, 扩大了玉米种植区域, 使玉米成为陇中旱农区的主要作物之一[4, 5]。但玉米高产出意味着对养分的高消耗[6]。故必须要优化养分管理措施, 才能不断提高农田生态系统物质循环水平, 确保玉米生产可持续发展。氮素作为玉米生长发育所必需的元素, 充足的氮素供应可以促进玉米干物质积累和产量提高[7]。玉米生产中, 如果后期追肥不足, 容易导致叶绿素含量下降, 引起玉米叶片早衰, 进而影响产量[8], 但盲目的为追求高产而大量施用氮肥则导致氮肥利用效率下降[9], 同时, 过量的施用氮肥造成环境污染等问题[10]

光合作用是作物产量形成的生理基础[11], 氮肥运筹对作物产量的影响与光合作用密切相关[12, 13, 14]。然而, 在陇中旱农区却鲜有关于氮肥运筹对玉米光合特性的研究。为此, 本研究通过不同氮肥用量和施肥时期对玉米光合特性、干物质积累分配及产量的影响研究, 拟从光合角度探讨氮肥运筹影响产量的机理, 以期为优化该区施氮制度提供理论和技术依据。

1 材料与方法
1.1 试验区概况

本试验于2014、2015和2016年在甘肃省定西市安定区甘肃农业大学旱农综合实验站进行, 研究所依托田间定位试验始于2012年。试区平均海拔2000 m, 年无霜期140 d, 属中温带半干旱偏旱区, 多年平均日照时数2476.6 h, 太阳辐射量为592.9 kJ· cm-2; 年均气温6.4 ℃, ≥ 0 ℃积温为2933.5 ℃, ≥ 10 ℃积温为2239.1 ℃, 多年平均降水量为390.9 mm, 80%保证率的降水量为365 mm, 年蒸发量达到1531 mm, 且该区降水量年际、年内变化率大。试验区光照和水分只能满足一年一熟作物的要求, 为陇中旱农区典型的半干旱雨养农业区, 试区土壤为黄绵土, 土质疏松, 质地均匀, 贮水性良好; 凋萎含水率7.3%, 饱和含水率28.6%, pH约为8.36, 土壤有机质含量12.01 g· kg-1, 全氮0.76 g· kg-1, 全磷1.77 g· kg-1。2014、2015和2016年降水量分别为384.2、340.1和300.2 mm(图1), 玉米生长期降水量分别为285.0、278.1和263.1 mm。

图1 2014-2016年试验区降水量Fig.1 Monthly rainfall in 2014-2016

1.2 试验设计

在全膜双垄沟播的基础上采用二因素裂区设计, 主区设计4个施氮水平 (N0:不施肥; N1: 100 kg· hm-2、N2: 200 kg· hm-2、N3: 300 kg· hm-2), 副区设计2个施氮时期(T1: 1/3基肥+1/3拔节期+1/3开花期、T2: 1/3基肥+2/3拔节期), 共7个处理, 3次重复, 21个小区, 各小区随机区组排列, 小区面积为28 m2 (3.3 m× 8.5 m), 播种前施P2O5 150 kg· hm-2。氮肥为尿素, 磷肥为过磷酸钙, 各小区播种量为5.25万株· hm-2, 参试玉米品种为‘ 富农821’ , 在4月下旬用点播器进行播种, 10月上旬收获, 为保证出苗率, 每穴播种两粒玉米, 在玉米出苗后, 及时放苗、间苗, 其他管理措施同大田管理。

1.3 测定项目与方法

1.3.1 叶片光合参数 于2015年分别在玉米开花期、灌浆期, 选择晴朗天气, 在9点到11点, 采用GFS-3000便携式光合作用-荧光测量系统测定玉米单叶叶片光合速率(photosynthetic rate, Pn)、蒸腾速率(transpiration rate, Tr)、气孔导度(stomatal conductance, Gs)和胞间CO2浓度(intercellular CO2 concentration, Ci), 测定部位为穗位叶。各测定项目重复3次。 用光合速率和蒸腾速率的比值计算叶片水分利用效率(Leaf water use efficiency, WUEL, μ mol· mmol-1)。

WUEL= PnTr

1.3.2 叶绿素含量的测定 于2015年分别在拔节期、开花期、灌浆期和成熟期用SPAD-502(北京制造)测定叶绿素含量, 测定部位是每株玉米最大展开叶的中部, 每个处理测定10株, 最后求平均值。

1.3.3 叶面积指数的计算 于2015年分别在玉米拔节期、抽雄期、灌浆期和成熟期各小区随机取样3株, 用直尺测量每株各叶片叶长(Lij)和最大叶宽(Bij), 计算叶面积指数(LAI)。

LAI=0.75ρ j=1ni=1m(Lij×Bij)m

式中:nj株的总叶片数; m为测定株数; ρ 为种植密度。

1.3.4 干物质积累和分配测定 于2015年分别在玉米拔节期、开花期、灌浆期和成熟期各小区随机取植株样3株, 105 ℃烘箱杀青半小时, 然后80 ℃烘干至恒量。成熟期时, 分别测定叶、茎、穗、穗轴和籽粒的干物质积累量, 并依次计算其分配率。

1.3.5 产量测定 于2014、2015和2016年玉米收获后按小区测定籽粒产量和生物产量, 最后换算为每公顷产量(kg· hm-2)。

1.4 数据分析

采用Excel 2016进行数据整理与作图, 用SPSS 19.0进行方差分析。

2 结果与分析
2.1 不同氮肥运筹下玉米叶片光合特性的变化

表1可知, 不同施氮量、施肥时期对玉米光合特性影响明显, 二者的交互效应对灌浆期时的蒸腾速率影响明显, 对其他光合指标没有影响。N3水平下的光合性能最强, 依次为N2、N1, N0最低, T2下的光合特性强于T1, 在开花期, N2和N3水平在同一施肥时期下差异不显著, 灌浆期时T2N2与T2N3、T1N3差异不显著。这说明适宜的施氮量及施肥时期可以改善玉米光合特性。

表1 不同氮肥运筹下玉米光合特性的变化 Table 1 Photosynthetic parameters of maize under different nitrogen application treatments
2.2 不同氮肥运筹下玉米叶片叶绿素含量的变化

不同施氮量及施肥时期下玉米叶绿素含量随着生育进程呈现先增加后降低趋势(图2), 拔节期时, 玉米叶绿素含量只受施氮量的影响, 开花期和成熟期时, 施氮量、施肥时期及二者的交互效应对叶绿素影响显著(表2)。全生育期内, N3处理下叶绿素含量较N2、N1、N0分别平均增加50.9%、17.0%、2.7%, T2较T1平均增加2.7%。这说明适宜的氮肥运筹可以增加玉米生育后期叶片叶绿素含量。

图2 不同氮肥运筹下玉米叶绿素含量的变化Fig.2 Chlorophyll content (SPAD) of maize under different nitrogen application treatments

表2 不同氮肥运筹对玉米叶绿素含量的影响 Table 2 Effects of nitrogen application on chlorophyll content (SPAD) of maize
2.3 不同氮肥运筹下玉米叶面积指数的变化

由图3可知, 随着生育期的推进, 玉米叶面积指数呈先增大后减小的趋势, 在灌浆期达到最大。 在各生育时期, 施氮量对叶面积指数影响显著, 施肥时期对开花期、灌浆期、成熟期玉米叶面积指数影响显著, 二者的交互效应对叶面积指数没有影响(表3)。全生育期内, N3、N2水平高于N1、N0, 其中N3较N1、N0分别平均增加38.1%、19.6%, N2较N1、N0分别平均增加31.4%、13.8%, N2在T2时期下与N3无显著差异。T2较T1平均增加6.1%。

图3 不同氮肥运筹下玉米叶面积指数的变化Fig.3 Leaf area index of maize under different nitrogen application treatments

表3 不同氮肥运筹对玉米叶面积指数的影响 Table 3 Effects of nitrogen application on leaf area index of maize
2.4 不同氮肥运筹下玉米干物质积累和分配的变化

不同施氮量、 施肥时期及二者的交互效应对玉米各生育时期干物质积累量影响如表4, 施氮量对玉米各生育时期干物质积累量影响显著, 施肥时期对玉米开花期、灌浆期和成熟期干物质积累量影响显著, 二者交互效应对玉米干物质积累量无影响。N3水平下的干物质积累量最高, 依次为N2、N1、N0, 各生育时期的平均干物质积累量分别为9.1、180.1、292.0、403.1 g· 株-1, 生长速度最快的阶段是拔节期到开花期, 灌浆期到成熟期主要以籽粒积累量为主。与T1相比, T2在开花期、灌浆期和成熟期分别增加9.3%、8.2%和9.9%。

表4 不同氮肥运筹下玉米各生育时期干物质积累量的变化 Table 4 Dry matter accumulation of maize under different nitrogen application treatments at different growth stage (g· plant-1)

表5可知, 成熟期时玉米干物质分配量表现为籽粒最高, 依次为茎、穗轴、叶, 雄穗最低, 平均分配率分别为53.8%、19.2%、14.4%、11.2%、1.4%, 籽粒分配量随干物质积累量的增加而增加。N3水平下的籽粒分配量最高, 依次为N2、N1, N0最低, T2时期下的籽粒分配量高于T1。这说明合理的施氮量及施肥时期可以增加玉米籽粒分配量。

表5 不同氮肥运筹下玉米成熟期干物质分配量的变化 Table 5 Dry matter distribution of maize under different nitrogen application treatments at maturity
2.5 不同氮肥运筹下玉米产量的变化

不同氮肥运筹下的玉米产量如表6, 施氮量、施肥时期及二者的交互效应对玉米籽粒产量和生物产量影响显著。2014、2015、2016年N3处理下的平均籽粒产量和生物产量分别较N0显著增加79.2%和68.4%, N2处理下的平均籽粒产量和生物产量分别较N0显著增加65.9%和54.1%, 与T1相比, 3年里T2下的平均籽粒产量和生物产量显著增加9.9%和13.5%, 同时, T2时期下N2的籽粒产量与N3无显著差异, 且T2时期下N2的生物产量与T1时期下N3无显著差异。这说明适宜氮肥用量和施肥时期可以提高玉米籽粒产量和生物产量。

表6 不同氮肥运筹下玉米籽粒产量和生物产量的变化 Table 6 Grain yield and biomass of maize under different nitrogen application treatments (kg· hm-2)
2.6 玉米叶片光合特性与产量的相关性分析

表7可知, 在不同施氮量及施肥时期下, 光合速率与籽粒产量(r=0.951* * )和生物产量(r=0.971* * )达到极显著水平, 蒸腾速率与籽粒产量(r=0.968* * )和生物产量(r=0.981* * )达到极显著水平, 气孔导度与籽粒产量(r=0.952* * )和生物产量(r=0.969* * )达到极显著水平, 胞间CO2浓度与籽粒产量(r=-0.913* * )和生物产量(r=-0.944* * )达到极显著水平, 叶片水分利用效率与籽粒产量(r=0.927* )和生物产量(r=0.955* )达到显著水平, 叶绿素含量与籽粒产量(r=0.920* * )和生物产量(r=0.931* * )达到极显著水平, 叶面积指数与籽粒产量(r=0.969* * )和生物产量(r=0.984* * )达到极显著水平, 籽粒产量和生物产量(r=0.996* * )达到极显著水平。这说明玉米籽粒产量和生物产量受光合特性的影响明显, 且籽粒产量受生物产量的影响显著。

表7 不同氮肥运筹下玉米光合特性与产量的相关性分析 Table 7 The relationship between photosynthetic characteristics and yield under different nitrogen application treatments
3 讨论
3.1 氮肥运筹对玉米产量的影响

氮素是玉米生长发育所需的最重要的元素之一, 玉米在各生育时期对氮肥的需求不同[15]。相关研究表明, 合理的施氮水平及其运筹方式可以显著提高玉米产量, 同一施氮量下, 施肥时期不同其产量也不同[16], 本研究发现, 施氮300 kg· hm-2和施氮200 kg· hm-2下的籽粒产量和生物产量均显著高于施氮100 kg· hm-2和不施氮, 而施氮300 kg· hm-2和施氮200 kg· hm-2(按1/3基肥+2/3拔节期配施)间无显著差异。并且还发现氮肥按1/3基肥+2/3拔节期施加时的籽粒产量和生物产量较1/3基肥+1/3拔节期+1/3开花期施加分别显著提高9.9%和13.5%。这与武文明等[17]研究结果相似, 其原因是合理的氮肥运筹增加了玉米有效穗数、穗粒数和百粒重[18]。而氮肥后移量与李二珍等[19]研究有所差异, 这可能是由区域气候和土壤差异所致。施氮300 kg· hm-2和施氮200 kg· hm-2(按1/3基肥+2/3拔节期配施)间无差异的原因可能是氮肥过量施用, 抑制了玉米根系的生长[20], 减少了根系对水分和养分的吸收, 从而削弱了产量的增加。

3.2 氮肥运筹影响玉米产量的光合作用机理

玉米干物质积累量直接影响着成熟期籽粒分配量, 获得高产的基础是获得高的干物质积累量, 并且使之尽可能多的分配到籽粒中[21]。相关研究表明, 施氮量增加玉米干物质积累量也增加, 同一施氮量下, 适量的氮肥后移会促进玉米生育后期干物质的积累[18]。本研究发现, 施氮300 kg· hm-2和施氮200 kg· hm-2(按1/3基肥+2/3拔节期配施时)玉米具有较高的干物质积累量和籽粒分配量, 同时施氮300 kg· hm-2和施氮200 kg· hm-2(按 1/3基肥+2/3拔节期配施)时玉米具有高的生物产量, 其原因主要是适宜的氮肥用量及施肥时期与玉米对氮素的需求时期相吻合[22], 同时玉米在拔节期到开花期时的生长速度最快, 进而对氮素的需求较多, 从而保证玉米在生育后期具有良好的同化物质转化能力, 进而提高籽粒分配。而氮肥按1/3基肥+1/3拔节期+1/3开花期配施时, 减少作物在拔节期到开花期的养分吸收, 从而影响玉米的生长。因此, 合适的氮肥供应可以保证玉米在生长期内对氮素需求, 从而提高干物质积累和籽粒分配, 进而提高产量。

对于禾谷类作物而言, 生育后期的光合作用直接影响着籽粒产量的形成, 合理的氮运筹可以调控玉米生育后期的生长及光合作用[23]。本研究发现, 施氮300 kg· hm-2和施氮200 kg· hm-2(按1/3基肥+2/3拔节期配施)时提高了玉米光合性能、叶绿素含量及叶面积指数, 进而提高了玉米籽粒产量和生物产量。其主要原因是施氮300 kg· hm-2和施氮200 kg· hm-2(按1/3基肥+2/3拔节期配施)使得玉米生育后期叶片具有较强的光捕获能力, 改善玉米光合性能, 减缓光合速率的下降幅度, 为籽粒分配更多的同化物质[24]。合理的氮肥运筹可以协调玉米生长期的需氮特性, 增加玉米在灌浆期时的同化物质转化, 进而促进玉米的灌浆速率[25]。另外, 适宜的施氮量和施肥时期可以提高叶绿素含量, 增强PSⅠ 和PSⅡ 电子传递能力, 缓解了植物衰老, 增强了叶片对于光破坏的防御机制, 有效调节了光合性能, 进而增产[26]。同时合理氮肥运筹延缓了花后植株下部叶片的衰老和脱落, 延长了LAI高值持续期, 在籽粒灌浆期保持了较高的光合面积[17], 从而提高了产量。有研究报道, 玉米籽粒产量的60%以上来自花后光合同化物质[27]。也就是说玉米灌浆期保持叶片较高的光合能力及较长的功能期, 对提高作物产量具有重要意义。本研究中, 玉米产量受光合特性的影响明显。其主要原因是光合速率影响植物在光合作用中吸收的CO2量, 从而影响单位时间、单位面积所转化的同化物质, 为玉米产量增加奠定基础; 其次, 植物在光下进行光合作用, 经由气孔吸收CO2, 气孔必须张开, 气孔开张又不可避免地发生蒸腾作用, 气孔可以根据环境条件的变化来调节自己的开度而使植物在损失水分较少的条件下获取最多的CO2, 从而增大蒸腾量的同时显著增加产量, 进而影响作物产量[28]。因此, 玉米光合速率、蒸腾速率、气孔导度及胞间CO2、叶片水分利用效率、叶绿素含量及叶面积指数共同影响着玉米产量。

4 结论

综合考虑施氮量与施肥时期, 在陇中旱农区应用全膜双垄沟播技术种植玉米, 施纯氮200 kg· hm-2左右, 按照1/3基肥+2/3拔节期施用, 通过增强玉米生育后期光合性能、提高叶绿素含量和叶面积指数, 增加玉米干物质积累和分配量, 从而提高玉米籽粒产量和饲料产量, 促进玉米生产可持续发展。

The authors have declared that no competing interests exist.

参考文献
[1] Yang H T, Zhao J R, Lu L P, et al. Researches on the strategy to utilization and development of maize silage in Beijing. Chinese Agricultural Science Bulletin, 2010, 26(21): 29-32.
杨海涛, 赵久然, 鲁利平, . 北京市青贮玉米利用与发展策略. 中国农学通报, 2010, 26(21): 29-32. [本文引用:1]
[2] Peng Z B, Tian Z G. The present situation and development strategy of grain and forage maize in China. Crops, 2004, (3): 4-6.
彭泽斌, 田志国. 我国粮饲兼用型玉米的产业现状与发展战略. 作物杂志, 2004, (3): 4-6. [本文引用:1]
[3] Luo Z Z, Niu Y N, Li L L, et al. Soil moisture and alfalfa productivity response from different years of growth on the Loess Plateau of central Gansu. Acta Prataculturae Sinica, 2015, 24(1): 31-38.
罗珠珠, 牛伊宁, 李玲玲, . 陇中黄土高原不同种植年限苜蓿草地土壤水分及产量响应. 草业学报, 2015, 24(1): 31-38. [本文引用:1]
[4] Wang H L, Zhang X C, Song S Y, et al. Regulation of whole field surface plastic mulching and double ridge-furrow planting on seasonal soil water loss and maize yield in rain-fed area of Northwest Loess Plateau. Scientia Agricultura Sinica, 2013, 46(5): 917-926.
王红丽, 张绪成, 宋尚有, . 西北黄土高原旱地全膜双垄沟播种植对玉米季节性耗水和产量的调节机制. 中国农业科学, 2013, 46(5): 917-926. [本文引用:1]
[5] Xie J H, Chai Q, Li L L, et al. The time loading limitation of continuous cropping maize yield under different plastic film mulching modes in semi-arid region of Loess Plateau of China. Scientia Agricultura Sinica, 2015, 48(8): 1558-1568.
谢军红, 柴强, 李玲玲, . 黄土高原半干旱区不同覆膜连作玉米产量的水分承载时限研究. 中国农业科学, 2015, 48(8): 1558-1568. [本文引用:1]
[6] Yong T W, Liu X M, Song C, et al. Effect of planting patterns on crop yield, nutrients uptake and interspecific competition in maize-soybean relay strip intercropping system. Chinese Journal of Eco-Agriculture, 2015, 23(6): 659-667.
雍太文, 刘小明, 宋春, . 种植方式对玉米-大豆套作体系中作物产量、养分吸收和种间竞争的影响. 中国生态农业学报, 2015, 23(6): 659-667. [本文引用:1]
[7] Song G Y, Yang H S, Xu S J, et al. Effects of nitrogen fertilizer management on yield, dry matter and N accumulation of maize cultivar Jinshan 10 used for both grain and feed purpose in Keerqin. Plant Nutrition and Fertilizer Science, 2017, 23(2): 289-296.
宋桂云, 杨恒山, 徐寿军, . 氮肥运筹对科尔沁地区粮饲兼用玉米金山10产量、干物质及氮素积累的影响. 植物营养与肥料学报, 2017, 23(2): 289-296. [本文引用:1]
[8] Wu X L, Li Z S, Tang Y L, et al. Effect of nitrogen management modes on grain yield, nitrogen use efficiency and light use efficiency of wheat. Chinese Journal of Applied Ecology, 2017, 28(6): 1889-1898.
吴晓丽, 李朝苏, 汤永禄, . 氮肥运筹对小麦产量、氮素利用效率和光能利用率的影响. 应用生态学报, 2017, 28(6): 1889-1898. [本文引用:1]
[9] Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924.
张福锁, 王激清, 张卫峰, . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924. [本文引用:1]
[10] Ju X T, Zhang C. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review. Journal of Integrative Agriculture, 2017, 16(12): 2848-2862. [本文引用:1]
[11] Borras L, Cura J A, Otegui M E. Maize kernel composition and post-flowering source-sink ratio. Crop Science, 2002, 42(3): 781-790. [本文引用:1]
[12] Xu G W, Lu D K, Wang H Z, et al. Coupling effect of wetting and drying alternative irrigation and nitrogen application rate on photosynthetic characteristics of rice leaves. Plant Nutrition and Fertilizer Science, 2017, 23(5): 1225-1237.
徐国伟, 陆大克, 王贺正, . 干湿交替灌溉与施氮量对水稻叶片光合性状的耦合效应. 植物营养与肥料学报, 2017, 23(5): 1225-1237. [本文引用:1]
[13] Qiu Q, Li J Y, Wang J H, et al. Interactive effects of soil water and fertilizer application on leaf net photosynthetic rate and SPAD readings of Catalpa bungei seedlings. Acta Ecologic Sinica, 2016, 36(11): 3459-3468.
邱权, 李吉跃, 王军辉, . 水肥耦合效应对楸树苗期叶片净光合速率和SPAD值的影响. 生态学报, 2016, 36(11): 3459-3468. [本文引用:1]
[14] Zhou Y, Su W, Wang J, et al. Effects of mulching and nitrogen application on photosynthetic characteristics and yield traits in Broomcorn Millet. Acta Agronomica Sinica, 2016, 42(6): 873-885.
周瑜, 苏旺, 王舰, . 不同覆盖方式和施氮量对糜子光合特性及产量性状的影响. 作物学报, 2016, 42(6): 873-885. [本文引用:1]
[15] Cai H G, Yuan J C, Liu J Z, et al. Optimal nitrogen application rate and nitrogen requirement characteristics in spring maize under high planting density condition. Scientia Agricultura Sinica, 2017, 50(11): 1995-2005.
蔡红光, 袁静超, 刘剑钊, . 高密度种植条件下春玉米氮素的需求规律与适宜施氮量. 中国农业科学, 2017, 50(11): 1995-2005. [本文引用:1]
[16] Zhang J J, Fan T L, Dang Y, et al. The effects of density and nitrogen management on the yield and physiological indices of spring maize under plastic-covered ridge and furrow planting in Loess Plateau east of Gansu. Scientia Agricultura Sinica, 2015, 48(22): 4574-4584.
张建军, 樊廷录, 党翼, . 密度与氮肥运筹对陇东旱塬全膜双垄沟播春玉米产量及生理指标的影响. 中国农业科学, 2015, 48(22): 4574-4584. [本文引用:1]
[17] Wu W M, Wang S J, Chen H J, et al. Postponed nitrogen application enhances root morphology recovery and photosynthetic characteristics of summer maize waterlogging stressed at seedling stage. Chinese Journal of Eco-Agriculture, 2017, 25(7): 1008-1015.
武文明, 王世济, 陈洪俭, . 氮肥后移促进受渍夏玉米根系形态恢复和提高花后光合性能. 中国生态农业学报, 2017, 25(7): 1008-1015. [本文引用:2]
[18] Wei T B, Hu F L, Chai Q, et al. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in Oasis Irrigation Areas. Scientia Agricultura Sinica, 2017, 50(15): 2916-2927.
魏廷邦, 胡发龙, 柴强, . 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应. 中国农业科学, 2017, 50(15): 2916-2927. [本文引用:2]
[19] Li E Z, Jin C W, Yan H, et al. Effect of application period and ratio of nitrogen fertilizer on photosynthetic and yield of springy maize. Soil and Fertilizer Sciences, 2017, 18(5): 12-16.
李二珍, 靳存旺, 闫洪, . 氮肥分次施用比例对春玉米光合速率及产量的影响. 中国土壤与肥料, 2017, 18(5): 12-16. [本文引用:1]
[20] Huang G B, Zhang E H, Hu H J. Eco-physiological mechanism on nitrogen use efficiency difference of corn varieties. Plant Nutrition and Fertilizer Science, 2001, 7(3): 293-297.
黄高宝, 张恩和, 胡恒觉. 不同玉米品种氮素营养效率差异的生态生理机制. 植物营养与肥料学报, 2001, 7(3): 293-297. [本文引用:1]
[21] Song Y L, Zhang D Q, Zhao T, et al. Effects of different planting patterns on the dry matter accumulation and yield of broomcorn millet. Journal of China Agricultural University, 2017, 22(12): 26-34.
宋艳丽, 张东旗, 赵涛, . 不同种植方式对糜子干物质积累及产量的影响. 中国农业大学学报, 2017, 22(12): 26-34. [本文引用:1]
[22] Chen X P, Cui X L, Vitousek P M, et al. Integrated soil-crop system management for food security. Proceedings of the National Academy of Science, USA, 2011, 108(16): 6399-6404. [本文引用:1]
[23] Sun X F, Ding Z S, Hou H P, et al. Post-anthesis photosynthetic assimilation and the changes of carbon and nitrogen in different varieties of spring maize. Scientia Agricultura Sinica, 2013, 39(7): 1284-1292.
孙雪芳, 丁在松, 侯海鹏, . 不同春玉米品种花后光合物质生产特点及碳氮含量变化. 作物学报, 2013, 39(7): 1284-1292. [本文引用:1]
[24] Li G, Gao H Y, Liu P, et al. Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage. Plant Nutrition and Fertilizer Science, 2010, 16(3): 536-542.
李耕, 高辉远, 刘鹏, . 氮素对玉米灌浆期叶片光合性能的影响. 植物营养与肥料学报, 2010, 16(3): 536-542. [本文引用:1]
[25] Wang S, Han X R, Zhan X M, et al. Effect of nitrogenous fertilizer levels on photosynthetic functions of maize ear leaves at grain filling stage. Plant Nutrition and Fertilizer Science, 2014, 20(2): 280-289.
王帅, 韩晓日, 战秀梅, . 氮肥水平对玉米灌浆期穗位叶光合功能的影响. 植物营养与肥料学报, 2014, 20(2): 280-289. [本文引用:1]
[26] Yang M D, Ma S C, Yang S J, et al. Effects of postponing nitrogen application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Chinese Journal of Applied Ecology, 2015, 26(11): 3315-3321.
杨明达, 马守臣, 杨慎骄, . 氮肥后移对抽穗后水分胁迫下冬小麦光合特性及产量的影响. 应用生态学报, 2015, 26(11): 3315-3321. [本文引用:1]
[27] Zhang R H, Guo D W, Zhang X H, et al. Effect of drought stress on physiological characteristics and dry matter production in maize silking stage. Acta Agronomica Sinica, 2012, 38(10): 1884-1890.
张仁和, 郭东伟, 张兴华, . 吐丝期干旱胁迫对玉米生理特性和物质生产的影响. 作物学报, 2012, 38(10): 1884-1890. [本文引用:1]
[28] Ye Z P. A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 2010, 34(6): 727-740.
叶子飘. 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 2010, 34(6): 727-740. [本文引用:1]