燕麦与苜蓿不同比例组合对驴盲肠体外发酵的影响
梁婷玉1, 郞侠2, 吴建平1,2,*, 王彩莲2, 刘立山2, 张瑞1, 韦胜1
1.甘肃农业大学动物科学技术学院,甘肃 兰州 730070
2.甘肃省农业科学院畜草与绿色农业研究所,甘肃 兰州 730070
*通信作者 E-mail: wujp@gsagr.ac.cn

作者简介:梁婷玉(1993-),女,甘肃会宁人,在读硕士。E-mail: m18294499287@163.com

摘要

研究燕麦干草与苜蓿不同比例组合对驴盲肠液体外发酵的影响,旨在为肉驴养殖中粗饲料的科学利用提供理论依据。将燕麦干草和苜蓿按干物质比为80:20、60:40、40:60和20:80分为Ⅰ、Ⅱ、Ⅲ、Ⅳ组,通过体外产气法与人工瘤胃持续发酵法培养2、4、8、12和24 h,各时间点3个重复,发酵终止后测定发酵参数和饲草养分降解率,通过24 h时发酵参数的加权估算值计算饲草组合效应值。结果表明:1)燕麦与苜蓿不同比例组合影响了其养分降解率,随着苜蓿比例的增加,干物质(DM)和酸性洗涤纤维(ADF)降解率增大,Ⅳ组显著高于Ⅰ组( P<0.05),各组中性洗涤纤维(NDF)降解率差异不显著( P>0.05)。2)随着苜蓿含量的增加,pH逐渐升高,Ⅳ组显著高于Ⅰ组( P<0.05);各时间点产气量(GP)均为Ⅱ组显著高于其余3组( P<0.05),且24 h时Ⅳ组显著高于Ⅰ和Ⅲ组( P<0.05);从发酵12 h开始Ⅲ、Ⅳ组氨态氮(NH3-N)浓度显著高于Ⅰ、Ⅱ组( P<0.05);24 h时Ⅱ组微生物蛋白(MCP)浓度显著高于Ⅲ组( P<0.05),与Ⅰ、Ⅳ组无显著差异( P>0.05);燕麦与苜蓿不同比例组合对挥发性脂肪酸(VFA)有显著影响,24 h时Ⅰ和Ⅳ组丙酸浓度显著高于Ⅱ和Ⅲ组( P<0.05),而Ⅰ、Ⅱ组总VFA(TVFA)含量显著高于Ⅲ、Ⅳ组( P<0.05)。3)发酵24 h后Ⅰ、Ⅱ和Ⅳ组均产生正组合效应,且Ⅳ组效应值最大,而Ⅲ组产生负组合效应。综上所述:燕麦与苜蓿按20:80组合时能提高DM、NDF和ADF降解率,且多项组合效应值更高;燕麦与苜蓿饲喂驴以20:80组合效果较好。

关键词: ; 盲肠; 燕麦; 苜蓿; 体外发酵; 组合效应
Effect of different proportions of oat hay and alfalfa on in vitro fermentation in simulated donkey ceca
LIANG Ting-yu1, LANG Xia2, WU Jian-ping1,2,*, WANG Cai-lian2, LIU Li-shan2, ZHANG Rui1, WEI Sheng1
1.College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
2.Institute of Animal and Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, China
* Corresponding author. E-mail: wujp@gsagr.ac.cn
Abstract

This study investigated the effects of mixing oat hay and alfalfa in different proportions, on in vitro fermentation rate when incubated with donkey cecum fluid, so as to provide a theoretical basis to determine the optimal use of roughage in donkey breeding. Oat hay and alfalfa were mixed in ratios of 80:20, 60:40, 40:60, 20:80, denoted as treatment groups Ⅰ, Ⅱ, Ⅲ, and Ⅳ respectively. Each mixture was cultured for 2, 4, 8, 12 and 24 hours using continuous fermentation in an artificial rumen, and in vitro gas production measured. There were 3 replicates at each time point. After termination of fermentation, fermentation parameters and nutrient degradation rate of forage were determined. The results showed: 1) With increased alfalfa proportion in the ration, the dry matter (DM) and acid detergent fiber (ADF) degradation rates increased gradually, and were significantly higher for group Ⅳ than for group Ⅰ ( P<0.05); there was no significant difference in the degradation of neutral detergent fiber (NDF) ( P>0.05). 2) With increase in alfalfa content, the pH increased gradually, and group Ⅳ was significantly higher than group Ⅰ ( P<0.05); The gas production (GP) of group Ⅱ was significantly higher than that of the other three groups at each time point ( P<0.05). 3) The concentration of NH3-N in groups Ⅲ and Ⅳ was significantly higher than for groups Ⅰ and Ⅱ from 12 hours ( P<0.05). At 24 h, the concentration of microbial protein in group Ⅱ was significantly higher than in group Ⅲ ( P<0.05), and there was no significant difference between groups Ⅰ, Ⅱ and Ⅲ ( P>0.05). 4) The combination of oat hay and alfalfa had significant effects on volatile fatty acids (VFA), the concentration of propionic acid in groups Ⅰ and Ⅳ was significantly higher than that in groups Ⅱ and Ⅲ at 24 h ( P<0.05), while the total VFA content in groups Ⅰ and Ⅱ was significantly higher than that in group Ⅲ and Ⅳ ( P<0.05). 5) After 24 h of fermentation, a positive interaction effect was observed in groups Ⅰ, Ⅱ and Ⅳ, with the interaction being largest in group Ⅳ. Conversely, a negative interaction effect was observed in group Ⅲ. We concluded that the optimal proportion of oat hay and alfalfa was 20:80 (group Ⅳ), as the degradation rate of DM, NDF and ADF was improved, and a higher interaction effect occurred.

Keyword: donkey; cecum; oat hay; alfalfa; in vitro fermentation; combination effect

驴(Equus asinus)作为单胃草食动物, 具有耐粗饲、抗逆性强等特性。我国养驴数在世界居首位, 但目前国内尚没有专门饲养驴的营养标准, 一般都根据小马营养需要量的75%来饲喂[1]。而相比于马, 驴有更强的粗纤维消化能力, 当按马的日粮配比饲喂驴时会出现一系列健康问题[2]。驴胃容积小, 饲料在胃中停留时间短, 是易饱又容易饿的动物, 需采食大量低能量饲草来满足食欲, 饲草中的纤维素能刺激胃肠蠕动进而促进营养物质的消化吸收。因此在驴的饲养管理中应结合其消化特性和生理需求供给充足的牧草。苜蓿(Medicago sativa)由于营养全面, 蛋白含量高(20%以上)等特性, 是草食家畜优质牧草之一[3]。研究发现, 饲喂苜蓿干草可明显提高小马盲肠细菌总数, 纤维分解菌的数目也显著增加, 从而有利于纤维素降解[4, 5]。在实践生产中, 苜蓿不能单独饲喂家畜, 其纤维含量低, 缺乏可溶性碳水化合物, 从而降低胃肠道微生物发酵[6]。研究表明, 以秸秆等低质饲草作为家畜基础日粮时, 苜蓿可作为理想补充料, 可为瘤胃分解菌提供生长所必需的挥发性支链脂肪酸[7, 8]。燕麦(Avena sativa)是仅次于小麦(Triticum aestivum)、玉米(Zea mays)等粮食作物种植面积居世界第7的农作物, 是我国唯一达到干草级的禾本科牧草。晾晒后的燕麦干草适口性好, 养分含量高, 中性洗涤纤维消化率高, 且含有较多的水溶性碳水化合物, 可为家畜提供充足的能量。研究发现燕麦干草代替部分苜蓿可改善断奶后犊牛瘤胃发酵, 提高氮利用率, 减少腹泻发生率[9]

驴的盲肠有着与反刍动物瘤胃类似的作用, 是纤维素被大量微生物发酵、分解、消化的地方[10]。Pearson等[11]研究发现饲喂稻草日粮时驴的表观消化率与牛相似。但饲喂任何单一牧草都不会使盲肠发酵达到优化, 本研究通过体外发酵法来研究苜蓿与燕麦组合对驴盲肠降解率及其发酵参数组合效应的影响, 为驴养殖业中饲草的科学利用提供数据支持和理论依据。

1 材料与方法
1.1 试验材料

本试验所用燕麦干草和苜蓿干草均采自甘肃省会宁县世民种养殖有限公司。饲草样品风干后粉碎, 过0.425 mm, 再在105 ℃下烘干至恒重后密封备用。饲草营养成分见表1

表1 2种饲草常规营养成分(干物质基础) Table 1 Nutrient components of 2 kinds of forage grass (%DM basis)
1.2 盲肠液采集与处理

在甘肃省会宁县世民种养殖有限公司选2头3~4周岁、体重相近的成年驴作为盲肠液供体动物, 屠宰后分离内脏, 每头驴快速采集1.5 L盲肠液, 用4层纱布过滤, 装入提前预热至39 ℃的保温瓶中, 同时持续注入CO2气体, 快速带回实验室进行体外发酵试验。

1.3 试验设计

本试验以燕麦和苜蓿为发酵底物进行体外发酵, 将燕麦与苜蓿按80:20, 60:40, 40:60和20:80进行组合, 依次为Ⅰ 、Ⅱ 、Ⅲ 、Ⅳ 组, 各处理组设5个培养时间点, 即2、4、8、12和24 h, 每组每个培养时间点设3个重复, 测定各培养时间点的产气量、发酵参数及养分降解率。

1.4 盲肠液体外发酵试验

1.4.1 人工唾液配制 参照Menke[12]的方法配制人工唾液。其主要成分包含5部分(表2):微量元素溶液(A)、碳酸盐缓冲液(B)、常量元素溶液(C)、还原剂溶液(D)(现用现配)和指示剂(E)。在发酵试验开始前将各组分按以下比例混合配制缓冲液:依次加入蒸馏水400 mL、B液200 mL、C液200 mL、A液0.1 mL、D液40 mL和E液1 mL。在39 ℃恒温水浴锅中预热, 并在充分混匀后持续通入CO2气体, 直至溶液颜色由粉红色变为无色即可。

表2 人工唾液配方 Table 2 The formula of artificial saliva

1.4.2 体外发酵及样品采集 体外产气装置采用ANKOM RFS 产气系统。准确称取按相应比例混合的饲草0.5 g装入250 mL厌氧发酵瓶底部, 迅速向每个瓶中加入100 mL预热的液体培养基和50 mL经4层纱布过滤的盲肠液, 并向瓶中持续通入CO2 5 s, 立即盖上瓶塞, 将每个发酵瓶与产气装置中相应的传感器相连接, 于39 ℃下连续培养24 h。发酵过程中实时记录每小时的产气量(gas production, GP)。

发酵参数及养分降解率用人工瘤胃系统进行发酵。准确称取按相应比例混合的饲草0.5 g装入尼龙袋中, 每组15个重复, 在105 ℃下烘干至恒重后将4个处理组尼龙袋分别装入1、2、3、4号发酵罐, 再向每个发酵罐中加入1000 mL缓冲液和500 mL经4层纱布过滤的盲肠液, 并持续通入CO2气体10 s, 盖上瓶盖放入人工瘤胃装置中进行发酵, 在发酵过程中分别采集2、4、8、12和24 h时每组的发酵液45 mL分装于15 mL离心管-20 ℃保存待测, 同时每组取3个尼龙袋, 用自来水冲洗终止发酵, 用于营养物质消化率测定。

1.5 测定指标及方法

1.5.1 常规营养成分分析及降解率测定 参考袁缨[13]的《动物营养学实验教程》检测燕麦和苜蓿干物质(dry matter, DM)、粗脂肪(ether extract, EE)、粗蛋白(crude protein, CP)、粗灰分(crude ash, Ash)、酸性洗涤纤维(acid detergent fiber, ADF)、中性洗涤纤维(neutral detergent fiber, NDF)、钙(calcium, Ca)和磷(phosphorus, P)含量, 计算燕麦与苜蓿不同比例组合DM、NDF和ADF体外降解率。其中:

某养分降解率=[(试验原料中某养分含量-发酵滤渣中某养分含量)/试验原料中某养分含量]× 100%

1.5.2 发酵参数测定 1)pH及GP测定:采用pH5系列笔式pH计直接测定2、4、8、12、24 h时培养液的pH值。读取发酵2、4、8、12和24 h时的累积压力值, 某时间点的累积产气量按下列公式计算:

Vx=Vj× Ppsi× 0.068004084

式中:Vx为39 ℃下某时间点的产气体积(mL); Vj为发酵瓶内液面上部空间的体积(mL); Ppsi为软件记录的累积压力psi。

2)NH3-N、VFA及MCP浓度的测定:采用冯宗慈等[14]的方法测定培养液NH3-N浓度; 采用GC-2010岛津气相色谱仪测定挥发性脂肪酸(volatile fatty acids, VFA)含量; 培养液中菌体蛋白(microbial protein, MCP)含量采用南京建成蛋白定量测试盒(A045-2)检测, 即考马斯亮蓝法。

3)饲草组合效应的估算:

单组合效应指数(single-factor associative effects index, SFAEI)=(实测值-加权估算值)/加权估算值× 100%

多项组合效应综合指数(multiple-factors associative effects index, MFAEI)= SFAEI=

SFAEIGP+SFAEIMCP+SFAE INH3N+SFAEITVFA

式中:实测值为实际测定值; 加权估算值=燕麦实测值× 燕麦比例(%)+苜蓿实测值× 苜蓿比例(%)。

1.6 数据统计分析

用Excel 2013整理后, 用SPSS 21.0软件进行单因子方差分析, 对营养物质降解率和发酵参数等数据用Duncan’ s法进行多重比较, 结果用平均值± 标准误(Mean± SE)表示, 当P< 0.05时认为差异显著; 对组合效应值进行t检验。

2 结果与分析
2.1 饲草组合发酵液pH的变化

表3可知, 随着发酵时间的延长, 各组pH均逐渐降低。在发酵2 h时, Ⅰ 组pH最高, 且显著高于Ⅳ 组(P< 0.05); 8 h时Ⅲ 、Ⅳ 组pH均显著高于Ⅰ 和Ⅱ 组(P< 0.05), 12 h时Ⅳ 组pH显著高于Ⅰ 和Ⅱ 组(P< 0.05); 24 h时Ⅳ 组pH显著高于其余3组(P< 0.05)。

表3 饲草不同比例组合对驴盲肠体外发酵pH的影响 Table 3 Effect of different proportions of forages on the pH of in vitro fermentation of donkey cecum
2.2 饲草不同比例组合对驴盲肠体外DM、NDF和ADF降解率的影响

表4可知, 随着发酵时间的延长, DM降解率逐渐增加。Ⅳ 组各时间点DM降解率最高, 发酵4 h时, Ⅳ 组显著高于其余3组(P< 0.05), 12 h时Ⅳ 组显著高于Ⅱ 组(P< 0.05), 24 h时Ⅳ 组显著高于Ⅰ 组, 其余各组间无显著性差异(P> 0.05)。

表4 饲草不同比例组合对驴盲肠体外DM消失率的影响 Table 4 Effect of different proportions of forages on DM of in vitro fermentation of donkey cecum (%)

表5可知, 随着发酵时间的延长, NDF降解率逐渐增加, 发酵2 h时Ⅰ 、Ⅱ 两组NDF降解率均显著高于Ⅲ 和Ⅳ 组(P< 0.05), 从发酵8 h开始, Ⅳ 组各时间点NDF降解率高于其他各组, 但差异不显著(P> 0.05)。

表5 饲草不同比例组合对盲肠体外NDF消化率的影响 Table 5 Effect of different proportions of forages on NDF of in vitro fermentation of donkey cecum (%)

表6可知, 随着发酵时间的延长, ADF降解率逐渐增加, 发酵2 h时, 各组间无显著性差异(P> 0.05); 发酵4、8和12 h时, Ⅳ 组ADF降解率显著高于Ⅰ 、Ⅱ 、Ⅲ 组(P< 0.05); 发酵24 h时Ⅳ 组显著高于Ⅰ 组(P< 0.05), 其余各组间无显著性差异(P> 0.05)。

表6 饲草不同比例组合对驴盲肠体外ADF降解率的影响 Table 6 Effect of different proportions of forages on ADF of in vitro fermentation of donkey cecum (%)
2.3 饲草不同比例组合对驴盲肠体外发酵产气量(GP)的影响

表7可知, 各组产气量均随发酵时间的延长而不断增加, 各时间点GP均为Ⅱ 组显著高于其余3组(P< 0.05), 各组24 h GP由高到低依次为Ⅱ > Ⅳ > Ⅰ > Ⅲ , 其中Ⅰ 、Ⅲ 组总产气量显著低于Ⅱ 和Ⅳ 组(P< 0.05)。

表7 饲草不同比例组合对驴盲肠体外发酵GP的影响 Table 7 Effect of different proportions of forages on gas production of in vitro fermentation of donkey cecum (mL)
2.4 饲草不同比例组合对驴盲肠体外发酵NH3-N浓度的影响

表8可知, 燕麦与苜蓿不同比例组合对驴盲肠体外发酵液中NH3-N浓度有显著影响。发酵2 h时, Ⅱ 组NH3-N浓度显著高于其余3组(P< 0.05), 4 h时Ⅰ 组显著高于Ⅱ 、Ⅲ 和Ⅳ 组(P< 0.05), 12和24 h时Ⅲ 和Ⅳ 组NH3-N浓度均显著高于Ⅰ 、Ⅱ 组(P< 0.05)。

表8 饲草不同比例组合对驴盲肠体外发酵NH3-N浓度的影响 Table 8 Effect of different proportions of forages on NH3-N concentration of in vitro fermentation of donkey cecum (mg· 100 mL-1)
2.5 饲草不同比例组合对驴盲肠体外发酵MCP浓度的影响

表9可知, 随着发酵时间的延长, MCP浓度呈先降低再升高再降低的变化趋势, 发酵2 h时Ⅳ 组MCP浓度显著低于Ⅰ 、Ⅱ 和Ⅲ 组(P< 0.05), 12 h时Ⅲ 、Ⅳ 组MCP浓度显著高于Ⅰ 、Ⅱ 组(P< 0.05), 24 h时Ⅱ 组MCP浓度显著高于Ⅲ 组(P< 0.05), 与Ⅰ 、Ⅳ 组间差异不显著(P> 0.05)。

表9 饲草不同比例组合对驴盲肠体外发酵MCP浓度的影响 Table 9 Effect of different proportions of forages on MCP concentration of in vitro fermentation of donkey cecum (mg· mL-1)
2.6 饲草不同比例组合对驴盲肠体外发酵VFA的影响

燕麦与苜蓿不同比例组合对体外发酵液中VFA有较大影响(表10)。乙酸浓度在发酵2~12 h内, Ⅱ 组均显著高于其他3组(P< 0.05), 24 h时Ⅰ 、Ⅱ 组间无显著性差异(P> 0.05), 但均显著高于Ⅲ 和Ⅳ 组(P< 0.05), 且Ⅳ 组显著高于Ⅲ 组(P< 0.05); 丙酸浓度在发酵2 h时Ⅱ 组显著高于其他3组(P< 0.05), 4、8和12 h时Ⅰ 、Ⅱ 组间均无显著性差异(P> 0.05), 且在8和12 h时Ⅰ 、Ⅱ 组丙酸浓度均显著高于Ⅳ 组(P< 0.05), 24 h时Ⅰ 、Ⅳ 组均显著高于Ⅱ 和Ⅲ 组; 各组异丁酸浓度在各时间点均存在显著性差异, 且Ⅱ 组最高, 在4、8和12 h时Ⅱ 组显著高于其他3组(P< 0.05), 24 h时与Ⅰ 组无显著性差异(P> 0.05); 丁酸浓度在各发酵时间点均为Ⅱ 组显著高于其他3组(P< 0.05), 24 h时Ⅰ 组显著高于Ⅲ 和Ⅳ 组(P< 0.05); 异戊酸浓度除发酵8 h时各组间差异不显著外(P> 0.05), 其他各时间点均为Ⅱ 组显著高于Ⅰ 、Ⅲ 、Ⅳ 组(P< 0.05); 戊酸浓度分别在2、4和12 h时Ⅱ 组显著高于Ⅲ 和Ⅳ 组(P< 0.05), 其余时间点各组间无显著性差异(P> 0.05); 发酵2~12 h内各时间点总挥发性脂肪酸(TVFA)含量均是Ⅱ 组显著高于Ⅰ 、Ⅲ 和Ⅳ 组(P< 0.05), 24 h时Ⅰ 、Ⅱ 组间无显著性差异(P> 0.05), 但均显著高于Ⅲ 和Ⅳ 组, 且Ⅲ 组显著低于Ⅳ 组(P< 0.05)。

表10 饲草不同比例组合对驴盲肠体外发酵VFA影响 Table 10 Effect of different proportions of forages on VFA production of in vitro fermentation of donkey cecum (mmol· L-1)
2.7 饲草组合效应

表11可知, 单项组合效应值(SFAEI)中Ⅱ 组的GP、TVFA和MCP效应值最高, Ⅳ 组的NH3-N浓度效应值最高。但通过多项组合效应值(MFAEI)综合评估来看, Ⅰ 、Ⅱ 和Ⅳ 组均为正组合效应, 且Ⅳ 组组合效应值最高, Ⅲ 组为负组合效应。

表11 燕麦与苜蓿组合效应综合评价 Table 11 Comprehensive evaluation of combined effects of oat and alfalfa
3 讨论
3.1 燕麦与苜蓿不同比例组合对盲肠体外发酵液pH的影响

pH是维持盲肠内环境正常的重要指标之一, 也是评价盲肠发酵的基本指标。pH的变化直接影响盲肠微生物对纤维类物质的降解[15]。细菌、原虫和厌氧性真菌最适生存pH分别为6.7、5.8和7.5[16]。本试验测得发酵液的pH为6.71~6.80, 在盲肠微生物活动的适宜范围内, 各比例组合的发酵环境稳定。试验结果显示在发酵2 h 时随苜蓿含量的增加pH逐渐降低, 从12 h开始, pH逐渐趋于稳定。有研究表明日粮中蛋白含量的增加可显著影响微生物发酵进而降低pH, 但随着发酵时间的延长, 发酵体系逐渐趋于稳定, pH逐渐趋于正常水平[17], 本试验结果与此一致。

3.2 燕麦与苜蓿不同比例组合对DM、NDF和ADF体外降解率的影响

日粮中DM的降解率是评价饲料被动物可利用程度的重要指标, 一般DM降解率越高饲料的可利用程度越高[18]。NDF和ADF是粗饲料纤维物质的主要组成部分, 具有调控微生物发酵作用[19]。本研究发现各组DM、NDF和ADF降解率随着发酵时间的延长, 均呈不同程度的上升趋势, 该结果与刘艳芳等[20]的研究结果一致。燕麦与苜蓿不同比例组合对NDF降解率无显著影响, 对ADF降解率影响较为显著, 但随着苜蓿比例增加DM、NDF和ADF降解率均有所升高。赵红艳[21]通过苜蓿与其他秸秆类饲草组合得出了相似结果。由于适宜的纤维含量会提高饲料利用率, 但纤维含量过高会降低饲料利用率[22]

3.3 燕麦与苜蓿不同比例组合对驴盲肠体外发酵产气量的影响

体外发酵产气量是衡量饲料可消化性的重要指标[23]。Silva等[24]发现不同粗饲料间组合可能会出现饲料间的正组合效应, 改善劣质饲料的降解率, 继而提高产气量。本试验结果表明, Ⅱ 组各时间点累计产气量均为最高, Ⅱ 和Ⅳ 组产气量组合效应优于Ⅰ 和Ⅲ 组; 此外Ⅱ 组产气量显著高于Ⅳ 组, 该结果与汤少勋等[25]研究结果相似。有学者认为产气量的增加表明微生物发酵活性越强, 则饲料消化率会不断提高[12, 26]。但由于不同饲料的产气量并不相同, 故产气量的多少并不能直接来评价饲料的降解程度, 需要与其他指标相结合进行评价[27]

3.4 燕麦与苜蓿不同比例组合对驴盲肠体外发酵NH3-N和MCP浓度的影响

NH3-N浓度可反映日粮中蛋白的降解及MCP合成状况。有研究表明, 瘤胃中NH3-N浓度为8.5 mg· 100 mL-1时瘤胃微生物蛋白质合成能力将达到饱和[28]。本研究结果表明, 发酵液中NH3-N浓度为2.73~5.94 mg· 100 mL-1, 且随着发酵时间的延长, 发酵液中NH3-N浓度呈降低趋势, 但随着苜蓿比例的增加, NH3-N浓度随发酵时间的延长而逐渐趋于稳定, Ⅱ 组NH3-N浓度从2 h时的最高到24 h时降至最低, 由此推断Ⅱ 组微生物对NH3-N的利用较高。本试验所得NH3-N浓度与赵红艳[21]研究结果相比偏低, 可能是由于本试验以单纯的粗饲料为发酵底物而使可降解碳水化合物偏少, 进而使微生物活性受限所致[29]。有研究报道体外培养中满足微生物生长需要的理想NH3-N浓度为2~5 mg· 100 m L-1[30], 因此本研究结果在正常范围内。MCP的代谢程度决定了消化道微生物区系的营养代谢水平[31]。MCP也反映饲料组合为微生物提供可利用蛋白质的能力, 主要受饲料中可降解氮和可发酵能平衡程度的影响[32]。本研究结果显示在发酵12 h时苜蓿比例较高的Ⅲ 和Ⅳ 组MCP浓度较苜蓿比例低的Ⅰ 和Ⅱ 组高, 但在24 h时Ⅱ 组显著高于Ⅲ 组, 该结果与张锐等[33]的研究结果一致。

3.5 燕麦与苜蓿不同比例组合对驴盲肠体外发酵VFA的影响

饲粮经消化道微生物发酵所产生的乙酸、丙酸、丁酸等VFA是草食家畜主要的能量来源[34]。乙酸、丙酸和丁酸占消化道发酵TVFA的95%, 其中乙酸是动物体合成乳脂肪和体脂肪的原料, 丙酸主要是促进葡萄糖的转化与储存, 丁酸可为动物机体供能[35]。试验中, 燕麦与苜蓿不同比例组合对各种VFA及TVFA均有显著影响, 其中在发酵24 h时, 除丙酸外, Ⅱ 组其余各种脂肪酸含量均显著高于其他3组; 相比于苜蓿含量高的Ⅲ 和Ⅳ 组, Ⅰ 和Ⅱ 组TVFA含量显著提高。饲粮中可降解纤维含量的升高可提高发酵液中VFA的浓度, 进而为消化道微生物生长繁殖提供充足能量[36, 37]

3.6 燕麦与苜蓿组合效应的综合评估

家畜采食混合饲料是绝对的, 各营养素通过饲料间的相互作用和影响作用于家畜。Ewing等[38]将混合日粮中不同组分之间的相互影响定义为饲料组合效应。家畜品种、饲养水平、饲草料种类及配合比例等因素均可直接促使饲草料之间组合效应的发生[26]。单个饲料的营养价值及利用率会随着日粮结构和采食量等因素的不同而改变。本试验结果显示, 燕麦与苜蓿不同比例组合, Ⅰ 、Ⅱ 两组SFAEI中24 h总产气量和TVFA为正, Ⅲ 和Ⅳ 组为负, 且Ⅱ 组大于Ⅳ 组。从产气量、NH3-N、TVFA和MCP 4个指标综合分析发现Ⅰ 、Ⅱ 和Ⅳ 组MFAEI均为正, 且Ⅳ 组MFAEI值最大, Ⅲ 组MFAEI为负。

4 结论

燕麦与苜蓿按20:80组合时能提高DM、NDF和ADF降解率, 且多项组合效应值更高; 燕麦与苜蓿饲喂驴以20:80组合效果较好。

The authors have declared that no competing interests exist.

参考文献
[1] Li W Q. Effect of different energy and protein levels in diet on growth performance and expression of the skin related genes of Dezhou donkeys. Jinzhou: Jinzhou Medical University, 2017.
李文强. 日粮能量蛋白水平对德州驴生长性能及驴皮相关基因表达的影响. 锦州: 锦州医科大学, 2017. [本文引用:1]
[2] Burden F. Practical feeding and condition scoring for donkeys and mules. Equine Veterinary Education, 2012, 24(11): 589-596. [本文引用:1]
[3] Broderick G A. In vitro procedures for estimating rates of ruminal protein degradation and proportions of protein escaping the rumen undegraded. Journal of Nutrition, 1978, 108(2): 181-190. [本文引用:1]
[4] Berg M V D, Hoskin S O, Rogers C W, et al . Fecal pH and microbial populations in thoroughbred horses during transition from pasture to concentrate feeding. Journal of Equine Veterinary Science, 2013, 33(4): 215-222. [本文引用:1]
[5] Ade F, Julliand V, Drogoul C, et al. Feeding and microbial disorders in horses: 1-effects of an abrupt incorporation of two levels of barley in a hay diet on microbial profile and activities. Journal of Equine Veterinary Science, 2001, 21(9): 439-445. [本文引用:1]
[6] Merchen N R, Berger L L, Jr F G. Comparison of the effects of three methods of harvesting and storing alfalfa on nutrient digestibility by lambs and feedlot performance of steers. Journal of Animal Science, 1986, 63(4): 1026-1035. [本文引用:1]
[7] Bryant M P, Robinson I M. Some nutritional characteristics of predominant culturable ruminal bacteria. Journal of Bacteriology, 1962, 84(4): 605-614. [本文引用:1]
[8] Bryant M P. Nutritional requirements of the predominant rumen cellulolytic bacteria. Federation Proceedings, 1973, 32(7): 1809-1813. [本文引用:1]
[9] Zou Y, Zou X, Li X, et al. Substituting oat hay or maize silage for portion of alfalfa hay affects growth performance, ruminal fermentation, and nutrient digestibility of weaned calves. Asian Australasian Journal of Animal Sciences, 2017, 31(3): 369-378. [本文引用:1]
[10] Frape D. Equine nutrition and feeding (4th ed). Singapore: Blackwell Publishing LTD, 2010: 10-15. [本文引用:1]
[11] Pearson R A, Archibald R F, Muirhead R H. The effect of forage quality and level of feeding on digestibility and gastrointestinal transit time of oat straw and alfalfa given to ponies and donkeys. British Journal of Nutrition, 2001, 85(5): 599-606. [本文引用:1]
[12] Menke K. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 1988, 28(1): 47-55. [本文引用:2]
[13] Yuan Y. Animal nutrition experiment course. Beijing: China Agricultural University Press, 2006: 12-44.
袁缨. 动物营养学实验教程. 北京: 中国农业大学出版社, 2006: 12-44. [本文引用:1]
[14] Feng Z C, Gao M. Improvement of ammonia nitrogen content in rumen by colorimetric method. Animal Husband ry and Feed Science, 2010, (6): 40-41.
冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, (6): 40-41. [本文引用:1]
[15] Yang L. Study on the combined effect of alfalfa, corn stover and concentrate supplement in beef cattle diet. Changchun: Jilin Agricultural University, 2007.
杨丽. 肉牛日粮中苜蓿、玉米秸秆、精料补充料组合效应研究. 长春: 吉林农业大学, 2007. [本文引用:1]
[16] Wang Q L, Tian L Y, Zhao R Y, et al. Factors affecting the rumen pH of dairy cows. Henan Animal Husband ry and Veterinary (Comprehensive Version), 2008, (10): 36-37.
王庆丽, 田兰英, 赵仁义, . 影响奶牛瘤胃pH值的因素. 河南畜牧兽医(综合版), 2008, (10): 36-37. [本文引用:1]
[17] Ge T, Sun W W, Zhu W Y. Effects of different levels of protein substrates on fermentation characteristics and microbial protein synthesis ability of porcine colonic microbiota. Journal of Animal Nutrition, 2016, 28(7): 1998-2004.
葛婷, 孙巍巍, 朱伟云. 不同水平蛋白质底物对猪结肠微生物体外发酵特性和菌体合成能力的影响. 动物营养学报, 2016, 28(7): 1998-2004. [本文引用:1]
[18] Jiang H. The comprehensive evaluation of feed value of Alhagi sparsifolia shap and alfalfa mix-silage. Beijing: China Agricultural University, 2017.
蒋慧. 骆驼刺与苜蓿混合青贮饲用价值综合评价. 北京: 中国农业大学, 2017. [本文引用:1]
[19] Feng Y. Effects of dietary sulfur-nitrogen ratio on ruminal environment parameters, gas production and nutrient degradation of sheep in artificial simulation. Shenyang: Shenyang Agricultural University, 2016.
冯媛. 用体外模拟法研究日粮氮硫比对绵羊瘤胃内环境参数、产气性能和养分降解率的影响. 沈阳: 沈阳农业大学, 2016. [本文引用:1]
[20] Liu Y F, Ma J, Du W, et al. Degradation characteristics of common roughage and roughage in the rumen of dairy cows. Journal of Animal Nutrition, 2018, 30(4): 1592-1602.
刘艳芳, 马健, 都文, . 常规与非常规粗饲料在奶牛瘤胃中的降解特性. 动物营养学报, 2018, 30(4): 1592-1602. [本文引用:1]
[21] Zhao H Y. The associative effects of dietary roughage of donkey and its impact on the major of cecum cellulolytic bacteria. Jilin: Jilin Agricultural University, 2014.
赵红艳. 驴日粮粗饲料的组合效应及其对盲肠主要纤维分解菌的影响. 吉林: 吉林农业大学, 2014. [本文引用:2]
[22] Li Y, Han X M, Li J G, et al. Associative effects of cornstalk, millet straw, and corn stalk on silage digestibility in vitro. Acta Prataculturae Sinica, 2017, 26(5): 213-223.
李妍, 韩肖敏, 李建国, . 体外法评价玉米秸秆、谷草和玉米秸秆青贮饲料组合效应研究. 草业学报, 2017, 26(5): 213-223. [本文引用:1]
[23] Menke K H, Raab L, Salewski A, et al. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agriculture Science, 1979, 93(1): 217-222. [本文引用:1]
[24] Silva A T, Greenhalgh J F D, Rakov E R. Influence of ammonia treatment and supplementation on the intake, digestibility and weight gain of sheep and cattle on barley straw diets. Animal Production, 1989, 48(1): 99-108. [本文引用:1]
[25] Tang S X, Jiang H L, Zhou C S, et al. Effects different forage species on in vitro gas production characteristics. Acta Prataculturae Sinica, 2005, 14(3): 72-77.
汤少勋, 姜海林, 周传社, . 不同牧草品种对体外发酵产气特性的影响. 草业学报, 2005, 14(3): 72-77. [本文引用:1]
[26] Sun L, Jia Y S, Ge G T, et al. Comprehensive evaluation of combinational effects of five forages. Chinese Grassland Science Journal, 2013, 35(3): 61-66.
孙林, 贾玉山, 格根图, . 五种饲草间组合效应的综合评定研究. 中国草地学报, 2013, 35(3): 61-66. [本文引用:2]
[27] Zhang B Y, Zhao G Q, Jiao T, et al. Effects of adding oat hay to the diet on in vitro ruminal fermentation. Acta Prataculturae Sinica, 2018, 27(2): 182-191.
张毕阳, 赵桂琴, 焦婷, . 饲粮中添加燕麦干草对绵羊体外发酵的影响. 草业学报, 2018, 27(2): 182-191. [本文引用:1]
[28] Yan S H, Zhao S P, Jiang Q H, et al. Effects of tea saponin on rumen fermentation and rumen microflora of dairy cows. Journal of Animal Nutrition, 2016, 28(8): 2485-2496.
严淑红, 赵士萍, 蒋琦晖, . 茶皂素对奶牛瘤胃发酵及瘤胃微生物区系的影响. 动物营养学报, 2016, 28(8): 2485-2496. [本文引用:1]
[29] Sun L S, Li H W, Cui H H, et al. Associative effects of different combination ratios of silkworm excrement and rice straw on the rumen microbial fermentation in vitro. Journal of Animal Nutrition, 2015, 27(1): 313-319.
孙丽莎, 李华伟, 崔慧慧, . 蚕沙和稻秸不同比例组合对瘤胃微生物体外发酵的组合效应. 动物营养学报, 2015, 27(1): 313-319. [本文引用:1]
[30] Schaefer D M, Davis C L, Bryant M P. Ammonia saturation constants for predominant species of rumen bacteria. Journal of Dairy Science, 1980, 63(8): 1248-1263. [本文引用:1]
[31] Mao H L, Wang J K, Zhou Y Y, et al. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science, 2010, 129(1): 56-62. [本文引用:1]
[32] Wang Z J, Ge G T, Gao J, et al. Research of associative effects of alfalfa, astragalus adsurgens, gaodan grass, chinese pennisetum and ryegrass. Journal of Animal Nutrition, 2015, 27(11): 3628-3635.
王志军, 格根图, 高静, . 苜蓿、沙打旺、高丹草、狼尾草和黑麦草间的组合效应研究. 动物营养学报, 2015, 27(11): 3628-3635. [本文引用:1]
[33] Zhang R, Zhu X P, Li J Y, et al. Combination effects between regular roughages of alfalfa hay and chinese wildrye in Liaoning cashmere goats. Journal of Animal Nutrition, 2013, 25(10): 2481-2488.
张锐, 朱晓萍, 李建云, . 辽宁绒山羊常用粗饲料苜蓿和羊草间饲料组合效应. 动物营养学报, 2013, 25(10): 2481-2488. [本文引用:1]
[34] Yi Y Q, Tang D, Yuan Y L, et al. In vitro test of combination of alfalfa and oat grass for meat sheep. The Chinese Livestock and Poultry Breeding, 2017, 13(11): 84-87.
衣艳秋, 唐丹, 袁英良, . 肉羊日粮苜蓿和燕麦草组合体外法试验. 中国畜禽种业, 2017, 13(11): 84-87. [本文引用:1]
[35] Pan M J. The impact of TMR composed with oat hay or Leymus chinensis on rumen digestion and metabolism. Nanjing: Nanjing Agricultural University, 2007.
潘美娟. 燕麦草、羊草及其组合TMR日粮对奶牛瘤胃消化代谢的影响. 南京: 南京农业大学, 2012. [本文引用:1]
[36] Hao X Y, Zhang G N, Me E Y, et al. Effects of replacing alfalfa hay with dry corn fiber feed and chinese leymus on in vitro rumen fermentation. Journal of Animal Nutrition, 2018, 30(3): 953-962.
郝小燕, 张广宁, 么恩悦, . 干玉米纤维饲料与羊草组合替代苜蓿干草对体外瘤胃发酵的影向. 动物营养学报, 2018, 30(3): 953-962. [本文引用:1]
[37] Liu S Z, Li L, Fu G H, et al. Fermentation of different fiber by microbial of Tibetan pig fecal in vitro. Chinese Veterinary Journal, 2017, 37(7): 1359-1364.
刘锁珠, 李龙, 付冠华, . 藏猪粪样微生物对不同纤维底物的体外发酵. 中国兽医学报, 2017, 37(7): 1359-1364. [本文引用:1]
[38] Ewing P V, Wells C A. Associative digestibility of corn silage, cottonseed meal and starch in steer rations. Agricultural Science and Technology, 1915, 12(8): 13-15. [本文引用:1]