[1] Khafipour E, Li S, Plaizier J C, et al . Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology, 2009, 22: 7115-7124. [2] Khafipour E, Krause D O, Plaizier J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 2009, 92: 1060-1070. [3] Wang D S, Zhang R Y, Zhu W Y, et al . Effects of subacute ruminal acidosis challenges on fermentation and biogenic amines in the rumen of dairy cows. Livestock Science, 2013, 155: 262-272. [4] Gressley T F, Hall M B, Armentano L E. Ruminant nutrition symposium: productivity, digestion, and health responses to hindgut acidosis in ruminants. Journal of Animal Science, 2011, 89(4): 1120-1130. [5] Li S, Khafipour E, Krause D O, et al . Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. Journal of Dairy Science, 2012, 95(1): 294-303. [6] Zhang L X, Zhang T F, Li L Y. Biochemical Test Method and Technology (second edition)[M]. Beijing: Higher Education Press, 1997. [7] Qin W L. Determination of volatile fatty acids by means of gas chromatography. Journal of Nanjing Agricultural University, 1982, 5: 110-116. [8] Guo X, Xia X, Tang R, et al . Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Letters in Applied Microbiology, 2008, 47: 367-373. [9] Li D F. Swine Nutrition (second edition)[M]. Beijing: China’s Agricultural Science and Technology Press, 2003: 7-10. [10] Li K Z, Li N, Li J S, et al . The effect of short-chain fatty acids (SFCA) on intestinal morphology and kinetic energy after rat small bowel transplantation. World Chinese Journal of Digestology, 2002, 10(6): 720-722. [11] Eid Y Z, Ohtsuka A, Hayashi K. Tea polychenols reduce glucocorticoid-induced growth inhibition and oxidative stress in broiler chickens. British Poultry Science, 2003, 44: 127-132. [12] Van landeqhem L, Santoro M A, Mah A T, et al . IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations. The Journal of the Federation of American Societies for Experimental Biology, 2015, 29(7): 2828-2842. [13] Mentschel J, Leiser R, Mulling C, et al . Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis. Archives of Animal Nutrition, 2001, 55: 85-102. [14] Liu J H, Xu T T, Zhu W Y, et al . A high-grain diet alters the omasal epithelial structure and expression of tight junction proteins in goat model. The Veterinary Journal, 2014, 201(1): 95-100. [15] Oetzel G R. Subacute ruminal acidosis in dairy cattle. Advances in Dairy Technology, 2003, 15: 307-317. [16] Graham C, Simmons N L. Functional organization of the bovine rumen epithelium. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 2005, 288(1): 173-181. [17] Penner G B, Steele M A, Aschenbach J R, et al . Ruminant nutrition symposium: molecular adaptation of ruminal epithelia to highly fermentable diets. Journal of Animal Science, 2011, 89(4): 1108-1119. [18] Tao S Y, Duanmu Y Q, Dong H B, et al . A high-concentrate diet induced colonic epithelial barrier disruption is associated with the activating of cell apoptosis in lactating goats. BMC Veterinary Research, 2014, 10: 235. [19] Gaebel G, Bell M, Martens H. The effect of low mucosal pH on sodium and chloride movement across the isolated rumen mucosa of sheep. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences, 1989, 74: 35-44. [20] Teixeira B M, Kowaltowski A J, Castilho R F, et al . Inhibition of mitochondrial permeability transition by low pH is associated with less extensive membrane protein thiol oxidation. Bioscience Reports, 1999, 19: 525-533. [21] Xie D, Chen Y X, Wang Z X, et al . Effects of monochromatic light on structure of small intestinal mucosa in broilers. Scientia Agricultura Sinica, 2009, 42(3): 1084-1090. [22] Kocherginskaya S A, Aminov R I, White B A, et al . Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis, random sequencing, and statistical ecology approaches. Anaerobe, 2001, 7: 119-134. [23] Tajima K, Arai S, Ogata K, et al . Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 2000, 6: 273-284. [24] Zhou M, Hernandez-Sanabria E, Guan L L. Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Applied and Environmental Microbiology, 2010, 76: 3776-3786. [25] Fernando S C, Purvis H T, Najar F Z, et al . Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology, 2010, 76(22): 7482-8490. [26] Huo W J, Zhu W Y, Mao S Y. Effects of feeding increasing proportions of corn grain on concentration of lipopolysaccharide in the rumen fluid and the subsequent alterations in immune responses in goats. Asian-Australasian Journal of Animal Science, 2013, 26(10): 1437-1445. [27] Chen K T, Malo M S, Beasley-Topliffe L K, et al . A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Digestive Diseases and Sciences, 2011, 56(4): 1020-1027. [28] Tian X J, Song X H, Yan S J, et al . Study of refolding of calf intestinal alkaline phosphatase. Protein Chemistry, 2003, 22(5): 417-422. [29] Goldberg R F, Austen W G Jr, Zhang X, et al . Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3551-3556. [30] Bates J M, Akerlund J, Mittge E, et al . Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe, 2007, 2(6): 371-382. [31] Poelstra K, Bakker W W, Klok P A, et al . Dephosphorylation of endotoxin by alkaline phosphatase in vivo . American Journal of Pathology, 1997, 151(4): 1163-1169. [6] 张龙翔, 张庭芳, 李玲媛. 生化试验方法和技术第二版[M]. 北京: 高等教育出版社, 1997. [7] 秦为琳. 应用气相色谱测定挥发性脂肪酸方法的研究改进. 南京农业大学学报, 1982, 5: 110-116. [9] 李德发. 猪的营养(第二版)[M]. 北京: 中国农业科学技术出版社, 2003: 7-10. [10] 李可洲, 李宁, 黎介寿, 等. 短链脂肪酸对大鼠移植小肠形态及动能的作用研究. 世界华人消化杂志, 2002, 10(6): 720-722. [21] 谢电, 陈耀星, 王子旭, 等. 单色光对肉雏鸡小肠黏膜形态结构的影响. 中国农业科学, 2009, 42(3): 1084-1090. |