[1] Zhang Y J, Shen Y X. The Development Potential and Direction of Alfalfa in Southern Farming Areas[C]. Beijing: The Third China National Alfalfa Industry Development Conference, 2010. [2] Lu R K. General status of nutrients (N, P, K) in soils of China. Acta Pedologica Sinica, 1989, 26(3): 280-286. [3] Neila A, Adnane B, Mustapha F, et al . Phaseolus vulgaris -Rhizobia symbiosis increases the phosphorus uptake and symbiotic N-2 fixation under insoluble phosphorus. Journal of Plant Nutrition, 2014, 37(5): 643-657. [4] Tajini F, Trabelsi M, Drevon J J, et al . Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean ( Phaseolus vulgaris L.). Saudi Journal of Biological Sciences, 2012, 19(2): 157-163. [5] Mandri B, Drevon J J, Bargaz A, et al . Interactions between common bean genotypes and rhizobia strains isolated from Moroccan soils for growth, phosphatase and phytase activities under phosphorus deficiency conditions. Journal of Plant Nutrition, 2012, 35(10): 1477-1490. [6] Jia Y, Gray V M, Straker C J. The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba . Annals of Botany, 2004, 94(2): 251-258. [7] Lzaguirre-Mayoral M L, Carballo O, Egea R, et al . Responses of Rhizobium -inoculated and nitrogen-supplied cowpea plants to increasing phosphorus concentrations in solution culture. Journal of Plant Nutrition, 2002, 25(11): 2373-2387. [8] Atemkeng M F, Remans R, Michiels J, et al . Inoculation with Rhizobium etli enhances organic acid exudation in common bean ( Phaseolus vulgaris L.) subjected to phosphorus deficiency. African Journal of Agricultural Research, 2011, 6(10): 2235-2242. [9] Zhang X T, Kang L H, Ma H B, et al . Selection of Acacia Rhizobium which have the ability to dissolve phosphorus. Forest Research, 2008, 21(5): 619-624. [10] Carmen B, Roberto D. Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium melitoti . Applied and Environmental Microbiology, 2010, 76(14): 4626-4632. [11] Li J F, Zhang S Q, Shi S L, et al . Screening of dissolve phosphorus Rhizobium meliloti antibiotic-resistant strain using microwave mutagenesis. Atomic Energy Science and Technology, 2009, 43(12): 1071-1076. [12] Jang B P, Lu R K, Yan Y C, et al . The content of iron phosphates in the paddy soils of southern China and their significance to the phosphorus nutrition of rice plant. Acta Pedologica Sinica, 1963, 11(4): 361-368. [13] Yan Y P, Wan B, Liu F, et al . Distribution, species and interfacial reactions of phytic acid in environment. Chinese Journal of Applied and Environmental Biology, 2012, 18(3): 494-501. [14] Liu L S, Yu Y X, Hu Y, et al . Effect of acid environment and aluminium on the growth of Rhizobium meliloti . Journal of Anhui Agricultural Science, 2012, 40(36): 17615-17618. [15] Liu W G, He Y Q, Zhang K, et al . Isolation, identification and characterization of a strain of phosphate-solubilizing bacteria from red soil. Acta Microbiologica Sinica, 2012, 52(3): 326-333. [16] Lazali M, Zaman-Allah M, Amenc L, et al . A phytase gene is overexpressed in root nodules cortex of Phaseolus vulgaris -rhizobia symbiosis under phosphorus deficiency. Planta, 2013, 238(2): 317-324. [17] Xie Y Q, Fang B S. Study on the antimicrobial preservation effect of phytic acid. Fujian Chemical Industry, 2002, (4): 39-41. [18] Hou W F, Xie J, Lan W Q, et al . Antimicrobial mechanisms of phytic acid against Escherichia coli . Jiangsu Journal of Agricultural Science, 2012, 28(2): 443-447. [19] Xie J, Hou W F, Tang Y, et al . Antimicrobial mechanisms of phytic acid against Shewanella putrefacens . Science and Technology of Food Industry, 2011, 32(10): 85-88. [20] Bari M L, Ukuku D O, Kawasaki T, et al . Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. Journal of Food Protection, 2005, 68(7): 1381-1387. [21] Tong L N, Li S M, Meng L B. Effect of inoculating arbuscular mycorrhizal fungi and rhizobium on soybean by utilizating organic phosphorus source. Journal of Northeast Agricultural University, 2009, 40(10): 37-42. [22] Wu Y P, Li Y F, Zheng C Y. Organic amendment application influence soil organism abundance in saline alkali soil. European Journal of Soil Biology, 2013, 54: 32-40. [23] Xu N N, Xie Y H, Feng X. Effect of adding fermented straw powder on the fertility condition of saline alkali soil. Journal of Tianjin University of Technology, 2013, 29(4): 57-59. [24] Rong L Y, Yao T, Ma W B, et al . The inoculant potential of plant growth promoting rhizobacteria strains to improve the yield and quality of Trifolium pretense cv. Minshan. Acta Prataculturae Sinica, 2014, 23(5): 231-240. [1] 张艳娟, 沈益新. 南方农区的紫花苜蓿发展潜力与方向[C]. 北京: 第三届中国苜蓿发展大会, 2010. [2] 鲁如坤.我国土壤氮、磷、钾的基本状况. 土壤学报, 1989, 26(3): 280-286. [11] 李剑峰, 张淑卿, 师尚礼, 等. 微薄诱变选育耐药高效溶磷苜蓿根瘤菌. 原子能科学技术, 2009, 43(12): 1071-1076. [12] 蒋柏藩, 鲁如坤, 颜益初, 等. 南方水稻土中磷酸铁对水稻磷素营养的意义. 土壤学报, 1963, 11(4): 361-368. [13] 严玉鹏, 万彪, 刘凡, 等. 环境中植酸的分布、形态及界面反应行为. 应用与环境生物学报, 2012, 18(3): 494-501. [14] 刘卢生, 玉永雄, 胡艳, 等. 酸铝对耐酸苜蓿根瘤菌生长的影响. 安徽农业科学, 2012, 40(36): 17615-17618. [15] 刘文干, 何园球, 张坤, 等. 一株红壤溶磷菌的分离、鉴定及溶磷特性. 微生物学报, 2012, 52(3): 326-333. [17] 谢益强, 方柏山. 植酸抑菌保鲜作用的研究. 福建化工, 2002, (4): 39-41. [18] 侯伟锋, 谢晶, 蓝蔚青, 等. 植酸对大肠杆菌抑菌机理的研究. 江苏农业学报, 2012, 28(2): 443-447. [19] 谢晶, 侯伟锋, 汤毅, 等. 植酸对腐败希瓦菌的抑菌机理. 食品工业科技, 2011, 32(10): 85-88. [21] 佟丽娜, 李淑敏, 孟令波. 双接种对大豆利用不同有机磷源的影响. 东北农业大学学报, 2009, 40(10): 37-42. [23] 徐娜娜, 解玉红, 冯忻. 添加发酵秸秆粉对盐碱土壤肥力的影响. 天津理工大学学报, 2013, 29(4): 57-59. [24] 荣良燕, 姚拓, 马文彬, 等. 岷山红三叶根际优良促生菌对其宿主生长和品质的影响. 草业学报, 2014, 23(5): 231-240. |