[1] Li H, Kang J, Zhao G M, et al . Effects of salinity on accumulation and distribution mode of dry matter and soluble sugar of Jerusalem artichoke ( Helianthus tuberosus ). Acta Prataculturae Sinica, 2014, 23(2): 160-170. [2] Yang C W, Li C Y, Yin H J, et al . Physiological response of Xiaobingmai ( Triticum aestivum -Agropyron intermedium ) to salt-stress and alkali-stress. Acta Agronomica Sinica, 2007, 33(8): 1255-1261. [3] Baisak R, Rana D, Acharya P B B, et al . Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant and Cell Physiology, 1994, 35(3): 489-495. [4] You J H, Lu J M, Yang W J. Studies on cold resistance and effects on related physiological index by Ca in clove seedling. Pratacultural Science, 2003, 12(1): 31-33. [5] Uchida A, Jagendorf A T, Hibino T, et al . Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163: 515-523. [6] Ruan H H, Shen W B, Ye M B, et al . Protective effect of nitric oxide on oxidative damage in wheat leaves under salt stress. Chinese Science Bulletin, 2001, 46(23): 1993-1997. [7] Zhang Y Y, Liu J, Liu Y L. Nitric oxide alleviates growth inhibition in maize seedling under NaCl stress. Journal of Plant Physiology and molecular Biology, 2004, 30(4): 455-459. [8] Hu F B, Long X H, Liu L, et al . Effects of SNP on photosynthesis and alkaloid content of Catharanthus roseus seedlings under NaCl stress. Acta Pedologica Sinica, 2011, 48(5): 1044-1050. [9] Gu W Y, Mo P H, Yang J S, et al . Exogenous nitric oxide and hydrogen peroxide regulate the acclimation of chicory ( Cichorium intybus ) to salt stress. Chinese Journal of Ecology, 2014, 33(1): 89-97. [10] Liu J X, Wang J C, Wang X, et al . Regulation of exogenous nitric oxide on photosynthetic physiological response of Lolium perenne seedlings under NaHCO 3 stress. Acta Ecologica Sinica, 2012, 32(11): 3460-3466. [11] Chen J X, Wang X F. Plant Physiology Experimental Guidance[M]. Guangzhou: South China University of Technology Press, 2002. [12] Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus de I’ Academie Bulgare des Sciences, 1997, 51: 121-124. [13] Li H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000. [14] Gao J F. Plant Physiology Experimental Guidance[M]. Beijing: Higher Education Press, 2006. [15] Chen H Y, Cui X J, Chen X, et al . Effects of salt stress and La 3+ on antioxidative enzymes and plasma membrane H + -ATPase in roots of two rice cultivars with different salt tolerance. Acta Agronomica Sinica, 2007, 33(7): 1086-1093. [16] Zhao X, Wang L Q, Zhou C J, et al . Effects of salt stress on the absorption and accumulation of Na + and K + in seedlings of four winter wheat ( Tritium aestivum ) genotypes. Acta Ecologica Sinica, 2007, 27(1): 205-213. [17] Delledonne M, Xia Y, Dixon R A, et al . Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585-588. [18] Leshem Y Y, Hamarat Y E. Plant aging the emission of NO and ethylene and effect of NO-releasing compounds on growth of pea ( Pisum sativum ) foliage. Journal of Plant Physiology, 1996, 148: 258-263. [19] Meng Y X, Wang S H, Wang J C, et al . Influences of CoCl 2 on the growth and seedling physiological indexes of Hordeum vulgare under NaCl stress. Acta Prataculturae Sinica, 2014, 23(3): 160-166. [20] Dixon D P, Davis B G, Edwards R. Functional divergence in the glutathione transferase superfamily in plants: Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana . Journal of Biological Chemistry, 2002, 277: 30859-30869. [21] Beligni M V, Fath A, Bethke P C, et al . Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiology, 2002, 129: 1642-1650. [22] Hong J K, Yun B W, Kang J G, et al . Nitric oxide function and signaling in plant disease resistance. Journal of Experimental Biology, 2008, 59: 147-154. [23] Parida A K, Das A B. Salt tolerance and salinity effects on plants a review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349. [24] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. [25] Serrano R. Structure and function of plasma membrane ATPase. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 61-94. [26] Zhang Y Y, Wang L L, Liu Y L, et al . Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na + /H + antiport in the tonoplast. Planta, 2006, 224: 545-555. [27] Wen Y, Zhao X, Zhang X, et al . Effects of nitric oxide on root growth and absorption in wheat seedlings in response to water stress. Acta Agronomica Sinica, 2008, 34(2): 344-348. [28] Zhao L Q, Zhang F, Guo J K, et al . Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiology, 2004, 134: 849-857. [29] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007, 59: 206-216. [30] Wang R M, Dong K H, Li Y Y, et al . Effects of applying exogenous plant hormone on praline metabolism of Swainsonia salsula seedlings under NaCl stress. Acta Prataculturae Sinica, 2014, 23(2): 189-195. [31] Fan H F, Guo S R, Jiao Y S, et al . The effects of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristics in cucumber seedlings under NaCl stress. Acta Ecologica Sinica, 2007, 27(2): 546-553. [32] Yang S L, Gong M. Effects of nitric oxide on proline accumulation and metabolic pathways in Maize ( Zea mays L.) seedlings. Plant Physiology Communications, 2009, 45(8): 781-784. [1] 李辉, 康健, 赵耕毛, 等. 盐胁迫对菊芋干物质和糖分积累分配的影响. 草业学报, 2014, 23(2): 160-170. [2] 杨春武, 李长有, 尹红娟, 等. 小冰麦( Triticum aestivum-Agropyron intermedium )对盐胁迫和碱胁迫的生理响应. 作物学报, 2007, 33(8): 1255-1261. [6] 阮海华, 沈文飙, 叶茂炳, 等. 一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应. 科学通报, 2001, 46(23):1993-1997. [7] 张艳艳, 刘俊, 刘友良. 一氧化氮缓解盐胁迫对玉米生长的抑制作用. 植物生理与分子生物学学报, 2004, 30(4): 455-459. [8] 胡凡波, 隆小华, 刘玲, 等. 硝普钠对NaCl胁迫下长春花幼苗光合及生物碱的影响. 土壤学报, 2011, 48(5): 1044-1050. [9] 谷文英, 莫平华, 杨江山, 等. 外源一氧化氮和过氧化氢调节菊苣盐适应性. 生态学杂志, 2014, 33(1):89-97. [10] 刘建新, 王金成, 王鑫, 等. 外源NO对NaHCO 3 胁迫下黑麦草幼苗光合生理响应的调节. 生态学报, 2012, 32(11): 3460-3466. [11] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2002. [13] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [14] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. [15] 陈海燕, 崔香菊, 陈熙, 等. 盐胁迫及La 3+ 对不同耐盐性水稻根中抗氧化酶及质膜H + -ATPase的影响. 作物学报, 2007, 33(7): 1086-1093. [16] 赵旭, 王林权, 周春菊, 等. 盐胁迫对四种基因型冬小麦幼苗Na + 、K + 吸收累积的影响. 生态学报, 2007, 27(1): 205-213. [19] 孟亚雄, 王世红, 汪军成, 等. CoCl 2 对NaCl 胁迫下大麦生长及幼苗生理指标的影响. 草业学报, 2014, 23(3): 160-166. [27] 闻玉, 赵翔, 张骁. 水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响. 作物学报, 2008, 34(2): 344-348. [30] 王若梦, 董宽虎, 李钰莹, 等. 外源植物激素对NaCl 胁迫下苦马豆苗期脯氨酸代谢的影响. 草业学报, 2014, 23(2): 189-195. [31] 樊怀福, 郭世荣, 焦彦生, 等. 外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响. 生态学报, 2007, 27(2): 546-553. [32] 杨双龙, 龚明. 一氧化氮对玉米幼苗体内脯氨酸积累及其代谢途径的影响. 植物生理学通讯, 2009, 45(8): 781-784. || |