[1] Feng S W. The evolution of drainage system of the Minqin oasis. Journal of Geographical Sciences, 1963, 29(3): 241-249. [2] Wang L D, Yao T, He F L, et al . Natural vegetable restoration and change of soil enzyme activity on secondary grassland of abandoned land area in the downstream of Shiyang River. Acta Prataculturae Sinica, 2014, 23(4): 253-261. [3] Jenny H. The Soil Resource[M]. New York: Springer-Verlag, 1980: 23-26. [4] Liu X J. Nutrient research on the activity of enzyme and soil nutrient in the different types of farmland. Chinese Journal of Soil Science, 2004, 35(4): 523-525. [5] Zak J C, Willing M R, Moorhead D L, et al . Functional diversity of microbial communities:a quantitative approach. Soil Biology and Biochemistry, 1994, 26(9): 1101-1108. [6] Fu Y, Zhuang L, Wang Z K, et al . On the physical chemical and soil microbial properties of soils in the habitat of wild Ferula in Xinjiang. Acta Ecologica Sinica, 2012, 32(10): 3279-3287. [7] Zhao H L, Zhou R L, Zhao X Y, et al . Desertification mechanisms and process of soil chemical and physical properties in Hulunbeir sandy grassland, Inner Mongolia. Acta Prataculturae Sinica, 2012, 21(2): 1-7. [8] Li X D, Wei L, Zhang Y C, et al . Effects of land use regimes on soil physical and chemical properties in the Longzhong part of Loess plateau. Acta Prataculturae Sinica, 2009, 18(4): 103-110. [9] Bao S D. Agrochemical Soil Analysis[M]. Beijing: China Agriculture Press, 2005: 23-107. [10] Sparling G P. Soil microbial biomass, activity and nutrient cycling as indicators of soil heath[A]. In: Pankhurst C, Doube B M, Gupta V V S R. Biological Indicators of Soil Heath[M]. Wallingford, UK, New York: CAB International, 1997. [11] Yao H Y, Huang C Y. Soil Microbial Ecology and Experimental Techniques[M]. Beijing: Science Press, 2006. [12] Xu G H, Zheng H Y. Soil Microbial Analysis Methods Manual[M]. Beijing: Agriculture Press, 1986. [13] Chinese Academy of Sciences Institute of Soil Microbes Room. Soil Microbial Research Method[M]. Beijing: Science Press, 1985. [14] Yang S J, Li T, Gan Y M, et al . Impact of different use patterns and degrees of grassland use on vegetation carbon storage in the Aba grassland pastoral area. Acta Prataculturae Sinica, 2014, 23(3): 325-332. [15] Wang J, Li G, Xiu W M, et al . Responses of soil microbial functional diversity to nitrogen and water input in Stipa baicalensiss steppe, Inner Mongolia, Northern China. Acta Prataculturae Sinica, 2014, 23(4): 343-350. [16] Zhang Y X, Yao T, Wang G J, et al . Characteristics of vegetation and soil inorganic nitrogen concentrations under different disturbed habitats in a weak alpine ecosystem. Acta Prataculturae Sinica, 2014, 23(4): 245-252. [17] Tian X H, Li S X. Uptake capacity of several vegetable crops to nitrate and ammonium. Journal of Plant Nutrition and Fertilizer, 2000, 6(2): 194-201. [18] Merou T P, Papanastasis V P. Factors affecting the establishment and growth of annual legumes in semi-arid mediterranean grasslands. Plant Ecology, 2009, 201: 491-500. [19] Niu Y, Liu X D, Zhao W J, et al . Characteristics and interrelation of shallow soil organic and total nitrogen of Picea crassifolia forest in the Qilian Mountain, Gansu, China. Journal of Desert Research, 2014, 34(2): 371-377. [20] Wei Q, Ling L, Chai C S, et al . Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu. Acta Ecologica Sinica, 2012, 32(15): 4700-4713. [21] Zeng D H, Hu Y L, Chang S X, et al . Land cover change effects on soil chemical and biological properties after planting Mongolian pine ( Pinus sylvestris var. mongolica ) in sandy lands in Keerqin northeastern China. Plant and Soil, 2009, 317: 121-133. [22] Jenkinson D S. The determination of microbial biomass carbon and nitrogen in soils[A]. In: Wilson J R. Advances in Nitrogen Cycling in Agricultural Ecosystems[M]. C.A.B.International, Wallingford, 1988: 368-386. [23] Dalmonech D, Lagomarsino A, Moscatelli M C, et al . Microbial performance under increasing nitrogen availability in a Medi-terranean forest soil. Soil Biology and Biochemistry, 2010, 42: 1596-1606. [1] 冯绳武. 民勤绿洲的水系演变. 地理学报, 1963, 29(3): 241-249. [2] 王理德, 姚拓, 何芳兰, 等. 石羊河下游退耕区次生草地自然恢复过程及土壤酶活性的变化. 草业学报, 2014, 23(4): 253-261. [4] 刘新建. 不同农田土壤酶活性与土壤养分相关关系研究. 土壤通报, 2004, 35(4): 523-525. [6] 付勇, 庄丽, 王仲科, 等. 新疆野生多伞阿魏生境土壤理化性质和微生物. 生态学报, 2012, 32(10): 3279-3287. [7] 赵哈林, 周瑞莲, 赵学勇, 等. 呼伦贝尔沙质草地土壤理化特性的沙漠化演变规律及机制. 草业学报, 2012, 21(2): 1-7. [8] 李晓东, 魏龙, 张永超, 等. 土地利用方式对陇中黄土高原土壤理化性状的影响. 草业学报, 2009, 18(4): 103-110. [9] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005: 23-107. [11] 姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术[M]. 北京: 科学出版社, 2006. [12] 许光辉, 郑洪元. 土壤微生物分析方法手册[M]. 北京:农业出版社, 1986. [13] 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985. [14] 杨树晶, 李涛, 干友民, 等. 阿坝牧区草地不同利用方式与程度对植被碳含量的影响. 草业学报, 2014, 23(3): 325-332. [15] 王杰, 李刚, 修伟明, 等. 贝加尔针茅草原土壤微生物功能多样性对氮素和水分添加的响应. 草业学报, 2014, 23(4): 343-350. [16] 张玉霞, 姚拓, 王国基, 等. 高寒生态脆弱区不同扰动生境草地植被及土壤无机氮变化特征. 草业学报, 2014, 23(4): 245-252. [17] 田霄鸿, 李生秀. 几种蔬菜对硝态氮、铵态氮的相对吸收能力. 植物营养与肥料学报, 2000, 6(2): 194-201. [19] 牛赟, 刘贤德, 赵维俊, 等. 祁连山青海云杉( Picea crassifolia )林浅层土壤碳、氮含量特征及其相互关系. 中国沙漠, 2014, 34(2): 371-377. [20] 魏强, 凌雷, 柴春山, 等. 甘肃兴隆山森林演替过程中的土壤理化性质. 生态学报, 2012, 32(15): 4700-4713. || |