草业学报 ›› 2015, Vol. 24 ›› Issue (11): 206-217.DOI: 10.11686/cyxb2015046
高暝, 陈益存, 杨素素, 刘英冠, 朱慧萍, 汪阳东*
收稿日期:
2015-01-21
出版日期:
2015-11-20
发布日期:
2015-11-20
通讯作者:
E-mail:wyd11111@126.com
作者简介:
高暝(1984-),女,陕西蒲城人,助理研究员,博士。
基金资助:
GAO Ming, CHEN Yi-Cun, YANG Su-Su, LIU Ying-Guan, ZHU Hui-Ping, WANG Yang-Dong*
Received:
2015-01-21
Online:
2015-11-20
Published:
2015-11-20
摘要: 性别分化是生物界普遍存在的一个自然现象。单性花由于仅含一种有功能的性器官,通过对其研究有助于解释植物性别分化和性别决定调控机制。植物性别决定方式多样且复杂,既有通过性别决定基因决定性别,又有性染色体,通过阻止性别决定基因重组确保稳定的性别分离;同时表观遗传由于影响基因表达活性,对性别分化也发挥重要作用。此外,植物激素、遗传因子、表观遗传修饰等之间存在相互作用,共同决定单性花性别。本文从单性花分类、雌雄花表型性状差异、遗传基础、表观遗传修饰、激素调控等方面综述单性花性别分化和决定调控机理,并提出未来研究中将面临的挑战和应对策略,为揭示植物性别分化和决定的机理提供有效参考。
高暝, 陈益存, 杨素素, 刘英冠, 朱慧萍, 汪阳东. 单性花植物性别分化研究进展[J]. 草业学报, 2015, 24(11): 206-217.
GAO Ming, CHEN Yi-Cun, YANG Su-Su, LIU Ying-Guan, ZHU Hui-Ping, WANG Yang-Dong. Progress on sex differentiation in unisexual flower plants[J]. Acta Prataculturae Sinica, 2015, 24(11): 206-217.
[1] Barrett S C H, Hough J. Sexual dimorphism in flowering plants. Journal of Experimental Botany, 2013, 64(1): 67-82. [2] Zhu H C. The sex determination in the higher plants’ unisexual flowers. Journal of the Graduates, Sun Yat-Sen University (natural sciences), 2000, 21(2): 42-46. [3] Qiang S. Botany[M]. Beijing: Higher Education Press, 2006. [4] Diggle P K, Di Stilio V S, Gschwend A R, et al . Multiple developmental processes underlie sex differentiation in angiosperms. Trends in Genetics, 2011, 27(9): 368-376. [5] Bai S N, Xu Z H. Unisexual cucumber flowers, sex and sex differentiation. International Review of Cell and Molecular Biology, 2012, 304: 1-55. [6] Meng J L. Plant Reproductive Genetics[M]. Beijing: Science Press, 1997. [7] Coulter J M. The Evolution of Sex in Plants[M]. Chicago: The University of Chicago Press, 1914. [8] Charlesworth D. Plant sex determination and sex chromosomes. Heredity, 2002, 88(2): 94-101. [9] Mitchell C H, Diggle P K. The evolution of unisexual flowers: morphological and functional convergence results from diverse developmental transitions. American Journal of Botany, 2005, 92(7): 1068-1076. [10] Darwin C. The Different Forms of Flowers on Plants of the Same Species[M]. London: John Murray, 1877. [11] Heslop-Harrison J. The unisexual flower: a reply to criticism. Phytomorphology, 1958, 8: 177-184. [12] Ming R, Bendahmane A, Renner S S. Sex chromosomes in land plants. Annual Review of Plant Biology, 2011, 62: 485-514. [13] Aryal R, Ming R. Sex determination in flowering plants: Papaya as a model system. Plant Science, 2014, 217: 56-62. [14] Allen G A, Antos J A. Sex ratio variation in the dioecious shrub Oemleria cerasiformis . American Naturalist, 1993, 141: 537-553. [15] Harris M S, Pannell J R. Roots, shoots and reproduction: sexual dimorphism in size and costs of reproductive allocation in an annual herb. Proceedings of the Royal Society B: Biological Sciences, 2008, 275: 2595-2602. [16] Delph L F. Sexual dimorphism in life history. Gender and Sexual Dimorphism in Flowering Plants[M]. Berlin: Springer-Verlag, 1999: 149-174. [17] Harris M S, Pannell J R. Canopy seed storage is associated with sexual dimorphism in the woody dioecious genus Leucadendron . Journal of Ecology, 2010, 98(2): 509-515. [18] Pickup M, Barrett S C H. Reversal of height dimorphism promotes pollen and seed dispersal in a wind-pollinated dioecious plant. Biology Letters, 2012, 8: 245-248. [19] Liu J P, You M H, Duan J, et al . Plasticity of reproductive strategy of dioecious Humulus scandens in response to variation in water deficit stress. Acta Prataculturae Sinica, 2015, 24(3): 226-232. [20] Ashman T L. Pollinator selectivity and its implications for the evolution of dioecy and sexual dimorphism. Ecology, 2000, 81(9): 2577-2591. [21] Glaettli M, Barrett S C H. Pollinator responses to variation in floral display and flower size in dioecious Sagittaria latifolia (Alismataceae). New Phytologist, 2008, 179(4): 1193-1201. [22] Yakimowski S B, Glaettli M, Barrett S C H. Floral dimorphism in plant populations with combined versus separate sexes. Annals of Botany, 2011, 108: 765-776. [23] Ashman T L. Sniffing out patterns of sexual dimorphism in floral scent. Functional Ecology, 2009, 23: 852-862. [24] Ainsworth C R A, Parker J, Edwards G. Intersex inflorescences of Rumex acetosa demonstrate that sex determination is unique to each flower. New Phytologist, 2005, 165: 711-720. [25] Zluvova J, Nicolas M, Berger A, et al . Premature arrest of the male flower meristem precedes sexual dimorphism in the dioecious plant Silene latifolia . Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(49): 18854-18859. [26] Zluvova J, Zak J, Janousek B, et al . Dioecious Silene latifolia plants show sexual dimorphism in the vegetative stage. BMC Plant Biology, 2010, 10(1): 208. [27] Kazama Y, Fujiwara M T, Koizumi A, et al . A SUPERMAN-like gene is exclusively expressed in female flowers of the dioecious plant Silene latifolia . Plant and Cell Physiology, 2009, 50(6): 1127-1141. [28] Acosta I F, Laparra H, Romero S P, et al . Tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science, 2009, 323: 262-265. [29] Mibus H, Tatlioglu T. Molecular characterization and isolation of the F/f gene for femaleness in cucumber ( Cucumis sativus L.). Theoretical and Applied Genetics, 2004, 109(8): 1669-1676. [30] Pfent C, Pobursky K, Sather D N, et al . Characterization of SpAPETALA3 and SpPISTILLATA, B class floral identity genes in Spinacia oleracea , and their relationship to sexual dimorphism. Development Genes and Evolution, 2005, 215(3): 132-142. [31] Sather D N, Jovanovic M, Golenberg E. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism. BMC Plant Biology, 2010, 10(1): 46. [32] Byzova M V, Franken J, Aarts M G M, et al . Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development. Genes Development, 1999, 13: 1002-1014. [33] Song Y P. Genetic Regulation of Floral Development in Populus tomentosa [D]. Beijing: Beijing Forestry University, 2013. [34] Di Stilio V S, Kramer E M, Baum D A. Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae)-a new model for the study of dioecy. Plant Journal, 2005, 41: 755-766. [35] Ming R, Wang J, Moore P H, et al . Sex chromosomes in flowering plants. American Journal of Botany, 2007, 94(2): 141-150. [36] Temsch E M, Greilhuber J, Krisai R. Genome size in liverworts. Preslia, 2010, 82: 63-80. [37] Yamato K T, Ishizaki K, Fujisawa M, et al . Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 6472-6477. [38] McLetchie D N, Collins A L. Identification of DNA regions specific to the X and Y chromosomes in Sphaerocarpos texanus . The Bryologist, 2001, 104: 543-547. [39] McDaniel S F, Willis J H, Shaw A J. A linkage map reveals a complex basis for segregation distortion in the moss Ceratodon purpureus . Genetics, 2007, 176: 2489-2500. [40] Segawa M, Kishi S, Tatuno S. Sex chromosomes of Cycas revoluta . The Japanese Journal of Genetics, 1971, 46: 33-39. [41] Lan T, Zhang S, Liu B, et al . Differentiating sex chromosomes of the dioecious Spinacia oleracea L. (spinach) by FISH of 45S rDNA. Cytogenet and Genome Research, 2006, 114: 175-177. [42] Hair J B, Beuzenberg E J. Chromosome evolution in the Podocarpaceae. Nature, 1958, 181: 1584-1586. [43] Hizume M, Shiraishi H, Tanaka A. A cytological study of Podocarpus macrophyllus with special reference to sex chromosomes. The Japanese Journal of Genetics, 1988, 63: 413-423. [44] Sakamoto K, Ohmido N, Fukui K, et al . Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa . Plant Molecular Biology, 2000, 44: 723-732. [45] Karlov G I, Danilova T V, Horlemann C, et al . Molecular cytogenetics in hop ( Humulus lupulus L.) and identification of sex chromosomes by DAPI-banding. Euphytica, 2003, 132: 185-190. [46] Ono T. Studies in hop. I. Chromosomes of common hop and its relatives. Bulletin of Brewing Science, 1955, 2: 1-65. [47] Nicolas M, Marais G, Hykelova V, et al . A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biology, 2005, 3: 47-56. [48] Howell E C, Armstrong S J, Filatov D A. Evolution of neo-sex chromosomes in Silene diclinis . Genetics, 2009, 182: 1109-1115. [49] Kumar L S S, Vishveshwaraiah S. Sex mechanism in Coccinia indica Wight and Arn. Nature, 1952, 170: 330-331. [50] Nakajima G. Cytological studies in some dioecious plants. Cytologia, 1937, 1: 282-292. [51] Patel G I. Chromosome basis of dioecism in Trichosanthes dioica Roxb. Current Science, 1952, 21: 343-344. [52] Roy R P, Saran S. Sex expression in the Cucurbitaceae. Biology and Utilization of the Cucurbitaceae[M]. Ithaca, NY: Cornell University Press, 1990: 251-268. [53] Blocka-Wandas M, Sliwinska E, Grabowska-Joachimiak A, et al . Male gametophyte development and two different DNA classes of pollen grains in Rumex acetosa L., a plant with an XX/XY 1 Y 2 sex chromosome system and a female-biased sex ratio. Sexual Plant Reproduction, 2007, 20: 171-180. [54] Navajas-Pérez R, Schwarzacher T, Ruiz Rejón M, et al . Molecular cytogenetic characterization of Rumex papillari s, a dioecious plant with an XX/XY 1 Y 2 sex chromosome system. Genetica, 2009, 135: 87-93. [55] Cuñado N, Navajas-Perez R, de la Herran R, et al . The evolution of sex chromosomes in the genus Rumex (Polygonaceae): identification of a new species with heteromorphic sex chromosomes. Chromosome Research, 2007, 15: 825-833. [56] Love A. Cytogenetic studies on Rumex subgenus Acetosella. Hereditas, 1943, 30: 1-136. [57] Smith B W. The evolving karyotype of Rumex hastatulus . Evolution, 1964, 18: 93-104. [58] Smith B W. Cytogeography and cytotaxonomic relationships of Rumex paucifolius . American Journal of Botany, 1968, 55: 673-683. [59] Fraser L G, Tsang G K, Datson P M, et al . A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genomics, 2009, 10: 102. [60] Murray M J. The genetics of sex determination in the family Amaranthaceae. Genetics, 1940, 25: 409-431. [61] Younis R A A, Ismail O M, Soliman S S. Identification of sex-specific DNA markers for date palm ( Phoenix dactylifera L.) using RAPD and ISSR techniques. Research Journal of Agriculture and Biological Sciences, 2008, 4: 278-284. [62] Telgmann-Rauber A, Jamsari A, Kinney M S, et al . Genetic and physical maps around the sex-determining M-locus of the dioecious plant asparagus. Molecular Genetics and Genomics, 2007, 278: 221-234. [63] Liu Z, Moore P H, Ma H, et al . A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature, 2004, 427: 348-352. [64] Horovitz S, Jiménez H. Cruzamientos interespecíficos e intergenéricos en caricaceas y sus implicaciones fitotécnicas. Agronomia Tropical (Venezuela), 1967, 17: 323-343. [65] Wu X, Wang J, Na J K, et al . The origin of the non-recombining region of sex chromosomes in Carica and Vasconcellea. Plant Journal, 2010, 63: 801-810. [66] Sansome F W. Sex determination in Silene otites and related species. Journal of Genetics, 1938, 35: 387-436. [67] Moore R C, Kozyreva O, Lebel-Hardenack S, et al . Genetic and functional analysis of DD44, a sex-linked gene from the dioecious plant Silene latifolia , provides clues to early events in sex chromosome evolution. Genetics, 2003, 163: 321-334. [68] Lahn B T, Page D C. Four evolutionary strata on the human X chromosome. Science, 1999, 286: 964-967. [69] Oyama R K, Volz S M, Renner S S. A sex-linked SCAR marker in Bryonia dioica (Cucurbitaceae), a dioecious species with XY sex-determination and homomorphic sex chromosomes. Journal of Evolutionary Biology, 2009, 22: 214-224. [70] Galán F. Sur la génetique de la monoecie et la dioecie zygotique chez Ecballium elaterium Rich. Comptes Rendus des Séances de l’Académie des Sciences de Paris, 1946, 222: 1130-1131. [71] Wolf D E, Satkoski J A, White K, et al . Sex determination in the androdioecious plant Datisca glomerata and its dioecious sister species D. cannabina . Genetics, 2001, 159: 1243-1257. [72] Terauchi R, Kahl G. Mapping of the Dioscorea tokoroo genome: AFLP markers linked to sex. Genome, 1999, 42: 752-762. [73] Barlow B A, Wiens D. Translocation heterozygosity and sex ratio in Viscum fischeri . Heredity, 1976, 37: 27-40. [74] Spigler R B, Lewers K S, Main D S, et al . Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana , reveals earliest form of sex chromosome. Heredity, 2008, 101: 507-517. [75] Ahmadi H, Bringhurst R. Genetics of sex expression in Fragaria species. American Journal of Botany, 1991, 78: 504-514. [76] Yin T, DiFazio S P, Gunter L E, et al . Genome structure and emerging evidence of an incipient sex chromosome in Populus . Genome Research, 2008, 18: 422-430. [77] Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity, 2005, 95(2): 118-128. [78] Vyskot B, Hobza R. The genomics of plant sex chromosomes. Plant Science, 2015, 236: 126-135. [79] Harkess A, Mercati F, Shan H Y, et al . Sex-biased gene expression in dioecious garden asparagus ( Asparagus officinalis ). New Phytologist, 2015, doi:10.1111/nph.13389. [80] Lande R. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution, 1980, 34: 292-305. [81] Ellegren H, Parsch J. The evolution of sex-biased genes and sex-biased gene expression. Nature Reviews Genetics, 2007, 8(9): 689-698. [82] Zhang J, Boualem A, Bendahmane A, et al . Genomics of sex determination. Current Opinion in Plant Biology, 2014, 18: 110-116. [83] Armstrong S J, Filatov D A. A cytogenetic view of sex chromosome evolution in plants. Cytogenetic and Genome Research, 2008, 120(3-4): 241-246. [84] Muyle A, Zemp N, Deschamps C, et al . Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia , a plant with young sex chromosomes. PLoS Biology, 2012, 10(4): e1001308. [85] Delph L F, Arntz A M, Scotti-Saintagne C, et al . The genomic architecture of sexual dimorphism in the dioecious plant Silene latifolia . Evolution, 2010, 64(10): 2873-2886. [86] Otto S P, Pannell J R, Peichel C L, et al . About PAR: The distinct evolutionary dynamics of the pseudoautosomal region. Trends in Genetics, 2011, 27(9): 358-367. [87] Blavet N, Blavet H, Ĉegan R, et al . Comparative analysis of a plant pseudoautosomal region (PAR) in Silene latifolia with the corresponding S. vulgaris autosome. BMC Genomics, 2012, 13(1): 226. [88] Ming R, Yu Q, Moore P H. Sex determination in papaya. Seminars in Cell & Developmental Biology, 2007, 18(3): 401-408. [89] Weingartner L A, Moore R C. Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex chromosome systems. Molecular Biology and Evolution, 2012, 29(12): 3909-3920. [90] Yu Q, Hou S, Hobza R, et al . Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Molecular Genetics and Genomics, 2007, 278(2): 177-185. [91] Ubeda-Tomas S, Bennett Malcolm J. Plant development: size matters, and it's all down to hormones. Current Biology, 2010, 20(12): R511-R513. [92] Kamachi S, Sekimoto H, Kondo H, et al . Cloning of a cDNA for a 1-aminocyclopropane-1-carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant and Cell Physiology, 1997, 38: 1197-1206. [93] Yamasaki S, Fujii N, Matsuura S, et al . The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant and Cell Physiology, 2001, 42: 608-619. [94] Tanurdzic M, Banks J A. Sex-determining mechanisms in land plants. The Plant Cell, 2004, 16(suppl 1): S61-S71. [95] Charlesworth D, Mank J E. The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics, 2010, 186(1): 9-31. [96] Barrionuevo F J, Burgos M, Scherer G, et al . Genes promoting and disturbing testis development. Histology and Histopathology, 2012, 27: 1361-1383. [97] Gorelick R. Evolution of dioecy and sex chromosomes via methylation driving Muller’s ratchet. Biological Journal of the Linnean Society, 2003, 80: 353-368. [98] Martin A, Troadec C, Boualem A, et al . A transposon-induced epigenetic change leads to sex determination in melon. Nature, 2009, 461: 1135-1138. [99] Chuck G, Meeley R, Irish E, et al . The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nature Genetics, 2007, 39(12): 1517-1521. [100] Janoušek B, Širok�� J, Vyskot B. Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album . Molecular and General Genetics, 1996, 250(4): 483-490. [101] Jaligot E, Adler S, Debladis ��, et al . Epigenetic imbalance and the floral developmental abnormality of the in vitro -regenerated oil palm Elaeis guineensis . Annals of Botany, 2011, 108(8): 1453-1462. [102] Tuskan G, DiFazio S, Faivre-Rampant P, et al . The obscure events contributing to the evolution of an incipient sex chromosome in Populus : a retrospective working hypothesis. Tree Genetics & Genomes, 2012, 8(3): 559-571. [103] Akagi T, Henry I M, Tao R, et al . A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science, 2014, 346: 646-650. [104] Heo J B, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science, 2011, 331: 76-79. [105] Cao Y, Dai Y, Cui S, et al . Histone H 2 B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis . The Plant Cell, 2008, 20(10): 2586-2602. [106] Jung J H, Park J H, Lee S, et al . The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis . The Plant Cell, 2013, 25(11): 4378-4390. [107] Wu L, Liu D, Wu J, et al . Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon . The Plant Cell, 2013, 25(11): 4363-4377. [2] 朱华晨. 高等植物单性花的性别决定. 中山大学研究生学刊(自然科学版), 2000, 21(2): 42-46. [3] 强胜. 植物学[M]. 北京: 高等教育出版社, 2006. [6] 孟金陵. 植物生殖遗传学[M]. 北京: 科学出版社, 1997. [19] 刘金平, 游明鸿, 段婧, 等. 水分胁迫下雌雄异株植物葎草繁殖策略的可塑性调节. 草业学报, 2015, 24(3): 226-232. [33] 宋跃朋. 毛白杨花发育遗传调控研究[D]. 北京: 北京林业大学, 2013. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||