[1] IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007. [2] Zhang C H, Wang M J, Wu L B T E, et al . Response of ANPP to climate change in Inner Mongolia typical steppe—a simulation study. Acta Botany Boreal Occident Sinica, 2012, 32(6): 1229-1237. [3] Long H L, Li X B, Huang L M, et al . Net primary productivity in grassland ecosystem in Inner Mongolia and its relationship with climate. Chinese Journal of Plant Ecology, 2010, 34(7): 781-791. [4] Groisman P Y, Karl T R, Easterling D R, et al . Changes in the probability of heavy precipitation: important indicators of climate change. Climate Change, 1999, 42(1): 243-283. [5] Anderson T M. Plant compositional change over time increases with rainfall in Serengeti grasslands. Oikos, 2008, 117: 675-682. [6] Sternberg M, Brown V K, Masters G J, et al . Plant community dynamics in a calcareous grassland under climate change manipulations. Plant Ecology, 1999, 143: 29-37. [7] Zavaleta E S, Shaw M R, Chiariello N R, et al . Additive effects of simulated climate changes, elevated CO 2 , and nitrogen deposition on grassland diversity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 7650-7654. [8] Li Z, Zhao D Y, Li R N, et al . A study of forage nutrition on seasonal grassland in the northern slope of Tianshan Mountain, Xinjiang, China. Pratacultural Science, 2001,18(5): 1-4. [9] Liu D W, Shi Y T, Wang M J, et al . Effect of grazing intensities on primary productivities and nutrient seasonal dynamic of Deyeuxia angustifolia Meadow in Sanjiang Plain. Acta Agrestia Sinica, 2013, 21(3): 446-451. [10] Xu S, Gong J R, Zhang Z Y, et al . The ecological stoichiometry of dominant species in different land uses type of grassland. Acta Prataculturae Sinica, 2014, 23(6): 45-53. [11] Jiang D M, Li M, Ya T M X, et al . Effects of enclosure on vegetation characteristics and spatial heterogeneity of Caragana mirophylla community in Horqin Sandy Land. Chinese Journal of Ecology, 2009, 28(11): 2159-2164. [12] Zhang F, Qi B, Wen F, et al . Analysis of the change of carbon storage in alpine arid grassland. Acta Prataculturae Sinica, 2011, 20(4): 11-18. [13] Zuo W Q, Wang Y H, Wang Y F, et al . Effects of enclosure on the community characteristics of Leymus chinensis in degenerated steppe. Acta Prataculturae Sinica, 2009, 18(3): 12-19. [14] Garibaldi L A, Semmartin M, Chaneton E J. Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands. Oecologia, 2007, 151: 650-662. [15] Semmartin M, Garibaldi L A, Chaneton E J. Grazing history effects on above- and below-ground litter decomposition and nutrient cycling in two co-occurring grasses. Plant and Soil, 2008, 303: 177-189. [16] Dong Q M, Zhao X Q, Ma Y S. Effects of grazing intensity and time on forage nutrition contents in alpine mixed-sown grassland. Chinese Journal of Grassland, 2007, 29(4): 67-73. [17] Glindemann T, Wang C, Tas B M, et al . Impact of grazing intensity on herbage intake composition and digestibility and on live weight gain of sheep on the Inner Mongolian steppe. Livestock Science, 2009, 124(1/3): 142-147. [18] Schlegel M L, Wachenheim C J, Benson M E, et al . Grazing methods and stocking rates for direct-seeded alfalfa pastures: II. Pasture quality and diet selection. Journal of Animal Science, 2000, 78(8): 2202-2208. [19] Wang Z W. Effect of Stocking Rate of Ecosystem Stability of Stipa breviflora Desert Steppe[D]. Hohhot: Inner Mongolia Agriculture University, 2009. [20] Yang S. Feed Analysis and Feed Quality Detection Technology[M]. Beijing: China Agricultural University Press, 1999. [21] Hang Y T, Xing Q. Inner Mongolia Grass Nutrients Entries[M]. Hohhot: Inner Mongolia People’s Publishing House, 2000. [22] Bilotta G S, Brazier R E, Haygarth P M. The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Advances in Agronomy, 2007, 94: 238-277. [23] Hu Z M, Fan J W, Zhong H P, et al . Spatiotemporal dynamics of aboveground primary productivity along precipitation gradient in Chinese temperate grassland. Science in China (Series D): Earth Sciences, 2006, 36(12): 1154-1162. [24] Ma W H, Yang Y H, He J S, et al . Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science in China (Series C): Life Sciences, 2008, 38(1): 84-92. [25] Chen J, Wang Y H. Precipitation pattern of desert steppe in Inner Mongolia, Sunite Left Banner. Acta Ecologica Sinica, 2012, 32(22): 6925-6935. [26] Sherry R A, Weng E, Arnone III J A, et al . Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Global Change Biology, 2008, 14: 2923-2936. [27] Cui X Y, Peng Y M, Chen D. Physiological traits and nutrient dynamics of creeping-rooted alfalfa varieties. Grassland and Turf, 2001, (1): 22-24. [28] Wang W, Liang C Z, Liu Z L, et al . Analysis of the plant individual behaviour during the degradation and restoring succession in steppe community. Chinese Journal of Plant Ecology, 2000, 24(3): 268-274. [29] Ren H Y, Zheng S X, Bai Y F. Effects of grazing on foliage biomass allocation of grassland communities Xilin River Basin, Inner Mongolia. Chinese Journal of Plant Ecology, 2009, 33(6): 1065-1074. [30] Huhta A P, Hellstron K, Rautio P, et al . Grazing tolerance of Gentianella amarella and other monocarpic herbs: why is tolerance highest at low damage levels. Plant Ecology, 2003, 166: 49-61. [31] Ma H B, Xie Y Z. Plant compensatory growth under different grazing intensities in desert steppe. Scientia Agricultura Sinica, 2008, 41(11): 3645-3650. [32] Wang X L, Han G D, Zhao M L, et al . The study of Salsola contribution role under different stocking rates in the desert steppe. Modern Agricultural Science and Technology, 2008, 23: 23-25. [2] 张存厚, 王明玖, 乌兰巴特尔, 等. 内蒙古典型草原地上净初级生产力对气候变化响应的模拟.西北植物学报, 2012, 32(6): 1229-1237. [3] 龙慧灵, 李晓兵, 黄玲梅, 等. 内蒙古草原生态系统初级生产力及其与气候关系. 植物生态学报, 2010, 34(7): 781-791. [8] 李柱, 赵德云, 李瑞年, 等. 天山北坡季节牧场牧草营养动态研究. 草业科学, 2001, 18(5): 1-4. [9] 刘冬伟, 史印涛, 王明君, 等. 放牧对三江平原小叶章草甸初级生产力及营养动态的影响. 草地学报, 2013, 21(3): 446-451. [10] 徐沙, 龚吉蕊, 张梓榆, 等. 不同利用方式下草地优势植物的生态化学计量特征. 草业学报, 2014, 23(6): 45-53. [11] 蒋德明, 李明, 押田敏雄, 等. 封育对科尔沁沙地小叶锦鸡儿群落植被特征及空间异质性的影响. 生态学杂志, 2009, 28(11): 2159-2164. [12] 张凡, 祁彪, 温飞, 等. 不同利用程度高寒干旱草地碳储量的变化特征分析. 草业学报, 2011, 20(4): 11-18. [13] 左万庆, 王玉辉, 王玉凤, 等. 围栏封育措施对退化羊草草原植物群落特征影响研究. 草业学报, 2009, 18(3): 12-19. [16] 董全民, 赵新全, 马玉寿. 放牧强度和放牧时间对高寒混播草地牧草营养含量的影响.中国草地学报, 2007, 29(4): 67-73. [19] 王忠武. 载畜率对短花针茅荒漠草原生态系统稳定性的影响[D]. 呼和浩特: 内蒙古农业大学, 2009. [20] 杨胜. 饲料分析及饲料质量检测技术[M]. 北京: 中国农业大学出版社, 1999. [21] 黄友庭, 邢旗. 内蒙古牧草营养成分分录[M]. 呼和浩特: 内蒙古人民出版社, 2000. [23] 胡中民, 樊江文, 钟华平, 等. 中国温带草地地上生产力沿降水梯度的时空变异性. 中国科学 (D辑): 地球科学, 2006, 36(12): 1154-1162. [24] 马文红, 杨元合, 贺金生, 等. 内蒙古温带草地生物量及其与环境因子的关系. 中国科学 (C辑): 生命科学, 2008, 38(1): 84-92. [25] 陈军, 王玉辉. 1956-2009年内蒙古苏尼特左旗荒漠草原的降水格局. 生态学报, 2012, 32(22): 6925-6935. [27] 崔鲜一, 彭玉梅, 程渡. 适宜放牧的根蘖型苜蓿生理特性及营养动态研究. 草原与草坪, 2011, (1): 22-24. [28] 王炜, 梁存柱, 刘钟龄, 等. 草原群落退化与恢复演替中的植物个体行为分析. 植物生态学报, 2000, 24(3): 268-274. [29] 任海彦, 郑淑霞, 白永飞. 放牧对内蒙古锡林河流域草地植物群落植物茎叶生物量资源分配的影响. 植物生态学报, 2009, 33(6): 1065-1074. [31] 马洪彬, 谢应忠. 不同放牧强度下荒漠草原植物的补偿性生长. 中国农业科学, 2008, 41(11): 3645-3650. [32] 王小亮, 韩国栋, 赵萌莉, 等. 荒漠草原不同载畜率下猪毛菜贡献作用研究. 现代农业科技, 2008, 23: 23-25. |