[1] Wu T Y, Schoenau J J, Li F M, et al . Effect of tillage and rotation on organic carbon forms of chernozemic soils in Saskatchewan. Journal of Plant Nutrition and Soil Science, 2003, 166: 328-335. [2] Li C S. Soil carbon reduction: the hidden trouble of Chinese agriculture-agricultural ecosystem carbon cycle comparative study of China and the United States. Journal of Quaternary Research, 2000, 20(4): 345-350. [3] Zhang H L, Gao W S, Chen F, et al . Conservation tillage research present situation, development trend and countermeasures. Journal of China Agricultural University, 2005, 10(1): 16-20. [4] Shao Y H, Pan J J, Sun B. Under the different forest vegetation characteristics of decomposition of soil organic carbon and carbon library research. Journal of Soil and Water Conservation, 2005, 19(3): 24-28. [5] Von Lützow M, Kogel-Knabner I, Ekschmitt K, et al . SOM fractions methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 2007, 39: 2183-2207. [6] Riffaldi R, Saviozzi A, Levi-Minzi R, et al . Biochemical properties of a mediterranean soil as affected by long-term crop management systems. Soil and Tillage Research, 2002, 67: 109-114. [7] Srivastava S C, Singh J S. Microbial C, N and P in dry tropical forest soils: Effects of alternate land-uses and nutrient flux. Soil Biology and Biochemistry, 1991, 23(2): 117-124. [8] Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466. [9] Zou X M, Ruan H H, Fu Y, et al . Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure. Soil Biology and Biochemistry, 2005, 37: 1923-1928. [10] Shen H, Cao Z H, Hu Z Y. Characterization of soil active organic carbon and its ecological effect. Journal of Ecology, 1999, 19(3): 32-38. [11] Biedetheck V O, Janzen H H, Zentuer P P. Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biology & Bioehemistry, 1994, 26: 1647-1656. [12] Biederbeck B O, Janzen H H, Campbell C A, et al . Labile soil organic matter as influenced by cropping practices in an arid environment. Soil Biology and Biochemistry, 1994, 26(12): 1656-1674. [13] Christensen B T. Physical fraction of soil and organic matter in primary particle size and density separates. Advances in Soil Science, 1992, 20: 1-90. [14] Lu R K. Soil Agricultural Chemical Analysis Methods[M]. Beijing: China Agricultural Science And Technology Press, 1999: 111-119. [15] John B, Yamashita T, Ludwig B, et al . Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 2005, 128: 63-79. [16] Yin Y F, Cai Z C. Using the method of the δ 13 C research to add red soil total organic carbon under the maize straw and reorganization of the organic carbon decomposition rate. Journal of Soil, 2007, 44(6): 1022-1027. [17] Janzen H H, Campbell C A, Brandt S A, et al . Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 1992, 56: 1799-1806. [18] Dalal R C, Mayer R J. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in South Queensland IV: Loss of organic carbon from different density fractions. Australian Journal of Soil Research, 1986, 24: 301-309. [19] Zhu B C. Some of the grassland agriculture ecological problems in tropical and subtropical China. Journal of Sichuan Grassland, 1988, 2: 1-6. [20] Ren J Z. Grassland Agriculture Ecology[M]. Beijing: China Agriculture Press, 1995. [21] Song L P, Luo Z Z, Li L L, et al . Effect of lucerne-crop rotations on soil physical properties in the semi-arial Loess Plateau of Central Gansu. Acta Prataculturae Sinica, 2015, 24(7): 12-20 [22] Lefroy R D B, Blair G J, Strong W M, et al . Changes in soil organic matter with cropping as measured by organic carbon fractions and 13 C natural isotope abundance. Plant Soil, 1993: 155-156, 399-402. [23] Richard D, Boone. Light-fraction soil organic matter: Origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry, 1994, 26(11): 1459-1468. [24] Yang X M, Kay B D. Rotation and tillage effects on soil organic carbon sequestration in a typic Hapludalf in Southern Ontario. Soil & Tillage Research, 2001, 59: 107-114. [25] Anthony M W, Graeme J B, et al . Managing legume leys, residues and fertilizers to enhance the sustainability of wheat yields and nutrient balance 2. Soil physical fertility and carbon. Soil & Tillage Research, 2000, 54: 77-89. [26] Dang T H. Influence of crop rotation on soil fertility in arid-highland of Loess Plateau. Soil Erosion Soil Water Cons, 1998, 4(3): 44-47. [27] Holford I C R, Schweitzer B E, Crocker G J. Comparative effects of subterranean clover, medic, lucerne, and chickpea in wheat rotations, on nitrogen, organic carbon, and moisture in two contrasting soils. Australian Journal of Soil Research, 1998, 36: 57-72. [28] Li W J, Wang Z, Han Q F, et al . Evaluation on carbon sequestration effects of artificial alfalfa pastures in the Loess Plateau area. Acta Ecologica Sinica, 2013, 33(23): 7467-7477. [29] Cui X, Shi S L. Analysis of the organic carbon, total nitrogen and physical property in the soil of alfalfa land in oasis irrigating region and dry farming regions. Grassland and Turf, 2015, 35(1): 68-72. [30] Li S Q, Li S X. Leaching loss of nitrate from semiarid area agroecosystem. Chinese Journal of Applied Ecology, 2000, 11(2): 240-243. [31] Chan K Y, Bowman A, Oates A. Oxidizible organic carbon fractions and soil quality changes in an Oxic Paleustalf under different pasture leys. Soil Science, 2001, 166(1): 61-67. [32] Luo C Y, Shen Y Y, Nan Z B, et al . Under the water and soil conservation tillage east of Gansu, corn, wheat and soybeans production, easy oxidation of soil organic carbon dynamics system. Journal of Soil and Water Conservation, 2005, 2005(2): 84-88. [33] Wang X L, Li F M. Clover and alfalfa-crop rotation system of soil microbial biomass and soil light group of carbon and nitrogen. Journal of Soil and Water Conservation, 2006, 20(4): 132-142. [34] Li X H, Wang Z H, Han M D, et al . Evaluation on soil carbon contents under different cropping systems on dryland in Loess Plateau. Transactions of the CSAE, 2010, 26(2): 325-330. [2] 李长生. 土壤碳储量减少: 中国农业之隐患-中美农业生态系统碳循环对比研究. 第四纪研究, 2000, 20(4): 345-350. [3] 张海林, 高旺盛, 陈阜, 等. 保护性耕作研究现状、发展趋势及对策. 中国农业大学学报, 2005, 10(1): 16-20. [4] 邵月红, 潘剑君, 孙波. 不同森林植被下土壤有机碳的分解特征及碳库研究. 水土保持学报, 2005, 19(3): 24-28. [10] 沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应. 生态学杂志, 1999, 18(3): 32-38. [14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 111-119. [16] 尹云锋, 蔡祖聪. 利用δ 13 C方法研究添加玉米秸秆下红壤总有机碳和重组有机碳的分解速率. 土壤学报, 2007, 44(6):1022-1027. [19] 朱邦长. 我国热带亚热带地区草地农业的某些生态问题. 四川草原, 1988, (2): 1-6. [20] 任继周. 草地农业生态学[M]. 北京: 中国农业出版社, 1995. [21] 宋丽萍, 罗珠珠, 李玲玲,等. 陇中黄土高原半干旱区苜蓿-作物轮作对土壤物理性质的影响. 草业学报, 2015, 24(7): 12-20. [28] 李文静, 王振, 韩清芳, 等. 黄土高原人工苜蓿草地固碳效益评价. 生态学报, 2013, 33(23): 7467-7477. [29] 崔星, 师尚礼. 绿洲灌溉区与旱作区多龄苜蓿地土壤有机碳、氮及物理特性分析. 草原与草坪, 2015, 35(1): 68-72. [30] 李世清, 李生秀. 半干旱地区农田生态系统中硝态氮的淋失. 应用生态学报, 2000, 11(2): 240-243. [32] 罗彩云, 沈禹颖, 南志标, 等. 水土保持耕作下陇东玉米-小麦-大豆轮作系统产量、土壤易氧化有机碳动态. 水土保持学报,2005, 4(2): 84-88. [33] 王晓凌, 李凤民. 苜蓿草地与苜蓿-作物轮作系统土壤微生物量与土壤轻组碳氮研究. 水土保持学报, 2006, 20(4): 132-142. [34] 李小涵, 王朝辉, 郝明德, 等. 黄土高原旱地不同种植模式土壤碳特征评价. 农业工程学报, 2010, 26(2): 325-330. |