[1] Jiang G M. Plant Ecophysiology [M]. Beijing: Higher Education Press, 2004: 43-44. [2] Case A L, Barrett S C H. Ecological differentiation of combined and separate sexes of Wurmbeadioica (Colchicaceae) in sympatry. Ecology, 2001, 82: 2601-2616. [3] Farquhar G D, Von C S, Berry J A. A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 plants. Planta, 1980, 149: 78-90. [4] Pan R C. Plant Physiology[M]. Beijing: Higher Education Press, 1982: 101-111. [5] Mae T. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant Soil, 1997, 196: 201-210. [6] Makino A, Osmond B. Effects of nitrogen nutrition on pea and wheat. Plant Physiol, 1991, 96: 355-362. [7] Mo Y W, Guo Z F, Xie J H. Effects of temperature stress on chlorophyll fluorescence parameters and photosynthetic rates of Stylosanthes guianensis . Acta Prataculturae Sinica, 2011, 20: 96-101. [8] Zhang J Z, Zhang Q Y, Sun G F, et al . Effects of drought stress and re-watering on growth and photosynthesis of Hosta. Acta Prataculturae Sinica, 2014, 23: 167-176. [9] Yu G R, Wang Q F. Ecophysiology of Plant Photosynthesis, Transpiration, and Water Use[M]. Beijing: Science Press, 2010, 64: 171-172. [10] Zheng Y Y, Xie Z X, Rimmington G M, et al . Elevated CO 2 accelerates net assimilation rate and enhance growth of dominant shrub species in a sand dune in central Inner Mongolia. Environmental and Experimental Botany, 2010, 68: 31-36. [11] Lee J S. Combined effect of elevated CO 2 and temperature on the growth and phenology of two annual C 3 and C 4 weedy species. Agriculture, Ecosystems and Environment, 2011, 140: 484-491. [12] Morgan J A, Lecain D R, Pendall E, et al . C 4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 2011, 476: 202-205. [13] Wang H, Zhou G S, Jiang Y L, et al . Interactive effects of changing precipitation and elevated CO 2 concentration on photosynthetic parameters of Stipa breviflora . Chinese Journal of Plant Ecology, 2012, 36: 597-606. [14] Niu S L, Yuan Z Y, Zhang Y F, et al . Photosynthetic responses of C 3 and C 4 species to seasonal water variability and competition. Journal of Experimental Botany, 2005, 56: 2867-2876. [15] Shah N H, Paulsen G M. Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 2003, 257: 219-226. [16] Hamerlynck E P, Huxman T E, Michael E L, et al . Effects of extreme high temperature, drought and elevated CO 2 on photosynthesis of the Mojave Desert evergreen shrub, Larreatridentata . Plant Ecology, 2000, 148: 183-193. [17] Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annual Review Plant Physiology, 1980, 31: 491-643. [18] Lee B H, Won S H, Lee H S, et al . Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene, 2000, 245: 283-290. [19] Delgado E, Mitchell R A C, Parry M A J, et al . Interacting effects of CO 2 concentration, temperature and nitrogen supply on photosynthesis and composition of winter wheat leaves. Plant Cell and Environment, 1994, 17: 1205-1213. [20] Taub D R, Seemann J R, Coleman J S. Growth in elevated CO 2 protects photosynthesis against high temperature damage. Plant Cell and Environment, 2000, 23: 649-656. [21] Wollenweber B, Porter J R, Schellberg J. Lack of interaction between extreme high-temperature events at vegetative and reproductive stages in wheat. Journal of Agronomy and Crop Science, 2003, 189: 142-150. [22] Christensen L, Coughenour M B, Ellis J E, et al . Vulnerability of the Asian typical steppe to grazing and climatic change. Climatic Change, 2004, 63: 351-368. [23] Gong D Y, Shi P J, Wang J A. Daily precipitation changes in the semiarid region over northern China. Journal of Arid Environments, 2004, 59: 771-784. [24] Bai Y F. Influence of seasonal distribution of precipitation on primary productivity of Stipa krylovii community. Chinese Journal of Plant Ecology, 1999, 2: 60-65. [25] Bai Y F, Xu Z X, Li D X. Study on a diversity of four Stipa communities in Inner Mongolia Plateau. Chinese Biodiversity, 2000, 8: 353-360. [26] Bai Y F, Li L H, Huang J H, et al . The influence of plant diversity and functional composition on ecosystem stability of four Stipa communities in the Inner Mongolia Plateau. Acta Botanica Sinica, 2001, 43: 280-287. [27] Zhao D L, Liu Z L, Yang G X, et al . Grazing impact on distribution pattern of the plant communities and populations in Stipa krylovii steppe. Acta Pratculturae Sinica, 2010, 19: 6-13. [28] Gu R, Chao L M, Zhang L X, et al . The influence of hydrothermal factor on the soil respiration and soil temperature sensitivity of Stipa krylovii steppe, Inner Mongolia, China. Acta Prataculturae Sinica, 2015, 24(4): 21-29. [29] Niu S L, Han X G, Ma K P, et al . Field facilities in global warming and terrestrial ecosystem research. Chinese Journal of Plant Ecology, 2007, 31: 262-271. [30] Wan Y F, You S C, Li Y E, et al . Influence of elevated atmospheric CO 2 concentration and temperature on growth and yield of early rice. Journal of Agro-Environment Science, 2014, 33: 1693-1698. [31] Ye Z P, Li J S. Comparative investigation light response of photosynthesis on non-rectangular hyperbola model and modified model of rectangular hyperbola. Journal of Jinggangshan University, 2010, 3: 38-44. [32] Niu S L, Xing X R, Zhang Z, et al . Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Global Change Biology, 2001, 17: 1073-1082. [33] Wan S Q, Xia J Y, Liu W X, et al . Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 2009, 90: 2700-2710. [34] Chapin Ⅲ F S, Shaver G R. Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology, 1996, 77: 822-840. [35] Xu Z Z, Zhou G S. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis . Plant and Soil, 2005, 269: 131-139. [36] Llorens L, Pefnuelas J, Estiarte M. Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globulariaalypum , to experimentally drier and warmer conditions. Physiology Plantarum, 2005, 119: 231-243. [37] Llorens L, Pefnuelas J, Beier C, et al . Effects of an experimental and drought on the photosynthetic performance of two ericaceous shrubs species along a North-South European gradient. Ecosystems, 2004, 7: 613-624. [38] Loik M E, Redar S P, Harte J. Photosynthetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA. Functional Ecology, 2000, 14: 166-175. [39] Mansfield T A, Hetherington A M, Atkinson C J. Some current aspects of stomatal physiology. Annual Review of Plant Physiology, 1990, 41: 55-75. [40] Knapp A K, Fay P A, Blair J M, et al . Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 2002, 298: 2202-2205. [41] Weltzin J F, Loik M E, Schwinning S, et al . Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience, 2003, 53: 941-952. [42] Wang Y Y, Yang J, Han L B. Effects of different irrigation volume on photosynthesis of turfgrass. Journal of Beijing Forestry University, 2006, S1: 26-31. [43] Zhou Q P, Cheng J M, Wan H E, et al . Study on the diurnal variations of photosynthetic characteristics and water use efficiency of Stipa bungeana Trin. under drought stress. Acta Agrestia Sinica, 2009, 4: 510-514. [1] 蒋高明. 植物生理生态学[M]. 北京: 高等教育出版社, 2004: 43-44. [4] 潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 1982: 101-111. [7] 莫亿伟, 郭振飞, 谢江辉. 温度胁迫对柱花草叶绿素荧光参数和光合速率的影响. 草业学报, 2011, 20: 96-101. [8] 张金政, 张起源, 孙国峰, 等. 干旱胁迫及复水对玉簪生长和光合作用的影响. 草业学报, 2014, 23: 167-176. [9] 于贵瑞, 王秋凤. 植物光合蒸腾与水分利用生理生态学[M]. 北京: 科学出版, 2010: 171-172. [13] 王慧, 周广胜, 蒋延玲, 等. 降水与CO 2 浓度协同作用对短花针茅光合特性的影响. 植物生态学报, 2012, 36: 597-606. [24] 白永飞. 降水量季节分配对克氏针茅草原群落初级生产力的影响. 植物生态学报, 1999, 2: 60-65. [25] 白永飞, 许志信, 李德新. 内蒙古高原针茅草原群落α多样性研究. 生物多样性, 2000, 8: 353-360. [26] 白永飞, 李凌浩, 黄建辉, 等. 内蒙古高原针茅草原植物多样性与植物功能群组成对群落初级生产力稳定性的影响(英文). 植物学报, 2001, 43: 280-287. [27] 赵登亮, 刘钟龄, 杨桂霞, 等. 放牧对克氏针茅草原植物群落与种群格局的影响. 草业学报, 2010, 19: 6-13. [28] 谷蕊, 潮洛濛, 张立欣, 等. 水热因子对克氏针茅草原土壤呼吸及其土壤温度敏感性的影响. 草业学报, 2015, 24(4): 21-29. [29] 牛书丽, 韩兴国, 马克平, 等. 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 2007, 31: 262-271. [30] 万运帆, 游松财, 李玉娥, 等. CO 2 浓度和温度升高对早稻生长及产量的影响. 农业环境科学学报, 2014, 33: 1693-1698. [31] 叶子飘, 李进省. 光合作用对光响应的直角双曲线修正模型和非直角双曲线模型的对比研究. 井冈山大学学报(自然科学版), 2010, 3: 38-44. [42] 王英宇, 杨建, 韩烈保. 不同灌溉量对草坪草光合作用的影响. 北京林业大学学报, 2006, S1: 26-31. [43] 周秋平, 程积民, 万惠娥, 等. 干旱胁迫下本氏针茅光合特性和水分利用效率日动态研究. 草地学报, 2009, 4: 510-514. |