[1] Gill S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. [2] Queval G, Foyer C H. Redox regulation of photosynthetic gene expression. Philosophical Transactions of the Royal Society B Biological Sciences, 2012, 367: 3475-3485. [3] Rauser W E. Phytochelatins and related peptides structure, biosynthesis and function. Plant Physiology, 1995, 109(4): 195-202. [4] Rauser W E. Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytochelatin, and metallothioneins. Cell Biochemistry and Biophysics, 1999, 31(1): 19-48. [5] Noctor G, Arisi A C M, Jouanin L, et al . Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany, 1998, 49: 623-647. [6] Aravind P, Prasad M N. Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiology and Biochemistry, 2005, 43(2): 107-116. [7] Zenk M H. Heavy metal detoxification in higher plants-a review. Gene, 1996, 179(1): 21-30. [8] Cobbett C S. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, 2000, 123(3): 825-832. [9] Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 2002, 53(1): 159-182. [10] Deepark K, Riddi D, Ragini S, et al . Proteomic profiling of γ-ECS over expressed transgenic Nicotiana in response to drought stress. Plant Signaling & Behavior, 2014, 9(8): 1-16. [11] He J, Li H, Ma C, et al . Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytologist, 2015, 205(1): 240-254. [12] Rivera-Becerril F, Van Tuinen D, Martin-Laurent F, et al . Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress. Mycorrhiza, 2005, 16(1): 51-60. [13] Choe Y H, Kim Y S, Kim I S, et al . Homologous expression of-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. Journal of Plant Physiology, 2013, 170(6): 610-618. [14] Wu J, Zhao Z, An L, et al . Inhibition of glutathione synthesis decreases chilling tolerance in Chorispora bungeana callus. Cryobiology, 2008, 57(1): 9-17. [15] Li X, Wu Y J, Sun L X. Growth and physiological responses of three warm-season turfgrasses to lead stress. Acta Prataculturae Sinica, 2014, (4): 171-180. [16] Liu J X. The Resistance Mechanism of Lolium perenne to Heavy Metal Cd 2+ Stress[D]. Beijing: Chinese Academy of Forestry, 2012. [17] Sun Q, Ye Z, Wang X, et al . Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii . Journal of Plant Physiology, 2007, 164(11): 1489-1498. [18] Boominathan R, Doran P M. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens . Biotechnology & Bioengineering, 2003, 83(2): 158-167. [19] Freeman J L, Persans M W, Nieman K, et al . Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell, 2004, 16(8): 2176-2191. [20] Bittsa'nszky A, Kömives T, Gullner G, et al . Ability of transgenic poplars with elevated glutathione content to tolerate zinc( 2+ ) stress. Environment International, 2005, 31(2): 251-254. [21] Li Z, Lu Y, Zhen R, et al . A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae : YCF1-catalyzed transport of bis (glutathionato) cadmium. Proceedings of the National Academy of Sciences, 1997, 94(1): 42-47. [22] Flocco C G, Lindblom S D, Elizabeth A H, et al . Over expression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea . International Journal of Phytoremediation, 2004, 6(4): 289-304. [23] Reisinger S, Schiavon M, Terry N, et al . Heavy metal tolerance and accumulation in indian mustard ( Brassica juncea L.) expressing bacterial γ-glutamylcysteine synthetase or glutathione synthetase. International Journal of Phytoremediation, 2008, 10(5): 440-454. [24] Xiang C, Werner B L, Christensen E M, et al . The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiology, 2001, 126(2): 564-574. [25] Lee S, Moon J S, Ko T, et al . Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiology, 2003, 131(2): 656-663. [26] Guo J, Dai X, Xu W, et al . Over expressing GSH 1 and AsPCS 1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana . Chemosphere, 2008, 72(7): 1020-1026. [27] Foyer C H, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 2005, 17(7): 1866-1875. [28] Li S. Redox modulation matters: emerging functions for glutaredoxins in plant development and stress responses. Plants, 2014, 3(4): 559-582. [29] Son J A, Narayanankutty D P, Roh K S. Influence of exogenous application of glutathione on rubisco and rubisco activase in heavy metal-stressed tobacco plant grown in vitro . Saudi Journal of Biological Sciences, 2014, 21(1): 89-97. [30] Bae M J, Kim Y S, Kim I S, et al . Transgenic rice over expressing the Brassica juncea gamma-glutamylcysteine synthetase gene enhances tolerance to abiotic stress and improves grain yield under paddy field conditions. Molecular Breeding, 2013, 31(4): 931-945. [15] 李西, 吴亚娇, 孙凌霞. 铅胁迫对三种暖季型草坪草生长和生理特性的影响. 草业学报, 2014, (4): 171-180. [16] 刘俊祥. 多年生黑麦草对重金属镉的抗性机理研究[D]. 北京: 中国林业科学研究院, 2012. |