[1] Elser J J, Sterner R W, Gorokhova E, et al . Biological stoichiometry from genes to ecosystems. Ecology Letters, 2000, 3: 540-550.
[2] Güsewell S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164(2): 243-266.
[3] He J S, Han X G. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 2010, 34(1): 2-6.
[4] Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008, 28(8): 3938-3949.
[5] Zhu Q L, Xing X Y, Zhang H, et al . Soil ecological stoichiometry under different vegetation area on Loess hilly-gully region. Acta Ecologica Sinica, 2013, 33(15): 4674-4682.
[6] Huang C Y. Pedology[M]. Beijing: China Agriculture Press, 2000.
[7] Wang W Q, Tong C, Jia R X. Ecological stoichiometry characteristics of wetland soil carbon, nitrogen and phosphorus in different water-flooded frequency. Journal of Soil and Water Conservation, 2010, 24(3): 238-242.
[8] Li C J, Xu X W, Sun Y Q, et al . Stoichiometric characteristics of C, N, P for three desert plants leaf and soil at different habitats. Arid Land Geography, 2014, 37(5): 976-984.
[9] Zhang Y M, Wang X Q. Study on the Biological Soil Crust of the Junggar Desert[M]. Beijing: Science Press, 2008.
[10] Whitford W G. Ecology of Desert Systems[M]. London, UK: Academic Press, 2002.
[11] Zhang L Y, Chen C D. On the general characteristics of plant diversity of Gurbantunggut sandy desert. Acta Ecologica Sinica, 2002, 22(11): 1923-1932.
[12] Qian Y B, Wu Z N, Zhao R F, et al . Vegetation patterns and species-environment relationships in the Gurbantunggut Desert of China. Journal of Geographical Sciences, 2008, 18(4): 400-414.
[13] China Vegetation Committee, Chinese Academy of Sciences. Vegetation Atlas of China[M]. Beijing: Science Press, 2001.
[14] Bao S D. Soil Chemical Analysis of Agriculture[M]. Beijing: China Agriculture Press, 2000.
[15] Hijmans R J, Cameron S E, Parra J L, et al . Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 2005, 25: 1965-1978.
[16] Zhou L L, Zhu H Z, Zhong H P, et al . Spatial analysis of soil bulk density in Yili, Xinjiang Uygur Autonomous Region, China. Acta Prataculturae Sinica, 2016, 25(1): 64-75.
[17] Tian H Q, Chen G S, Zhang C, et al . Pattern and variation of ratios in China's soils: a synthesis of observational data. Biogeochemistry, 2010, 98(1/3): 139-151.
[18] Wang S Q, Zhou C H, Li K R, et al . Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geographica Sinica, 2000, 55(5): 533-544.
[19] Zeng Q C, Li X, Dong Y H, et al . Ecological stoichiometry characteristics and physical-chemical properties of soils at different latitudes on the Loess Plateau. Journal of Natural Resources, 2015, 30(5): 870-879.
[20] Yang Y, Liu B R, Yang X G, et al . Soil stoichiometry characteristics of artificial Caragana korshinskii shrubs with different density in desert steppe. Bulletin of Soil and Water Conservation, 2014, 34(5): 67-73.
[21] Qing Y, Sun F D, Li Y, et al . Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest China. Acta Prataculturae Sinica, 2015, 24(3): 38-47.
[22] Cleveland C C, Liptzin D. stoichiometry in soil: Is there a Redfield for the microbial biomass. Biogeochemistry, 2007, 85: 235-252.
[23] Ding F, Lian P Y, Zeng D H. Characteristics of plant leaf nitrogen and phosphorus stoichiometry in relation to soil nitrogen and phosphorus concentrations in Songnen Plain meadow. Chinese Journal of Ecology, 2011, 30(1): 77-81.
[24] Pan J, Song N P, Wu X D, et al . Effects of different planting-years of artificial Caragana intermedia shrubs on soil organic carbon, nitrogen and phosphorus stoichiometry characteristics in desert steppe. Journal of Zhejiang University (Agriculture Life Sciences), 2015, 41(2): 160-168.
[25] Wang J L, Zhong Z M, Wang Z H, et al . Soil C/N distribution characteristics of alpine steppe ecosystem in Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2014, 23(2): 9-19.
[26] Tao Y, Zhang Y M. Leaf and soil stoichiometry of four herbs in the Gurbantunggut Desert, China. Chinese Journal of Applied Ecology, 2015, 26(3): 659-665.
[27] Liu Z Y, Yang N. Soil ecological stoichiometry properties of different re-vegetation stages on sloping-land of purple soil. Chinese Agricultural Science Bulletin, 2015, 31(18): 163-167.
[28] Yang J, Xie Y Z, Wu X D, et al . Stoichiometry characteristics of plant and soil in alfalfa grassland with different growing years. Acta Prataculturae Sinica, 2014, 23(2): 340-345.
[29] Fan J W, Zhang L X, Zhang W Y, et al . Plant root N and P levels and their relationship to geographical and climate factors in a Chinese grassland transect. Acta Prataculturae Sinica, 2014, 23(5): 69-76.
[30] Wang C L, Guo Q S, Tan D Y, et al . Haloxylon ammodendron community patterns in different habitats along southeastern edge of Zhunger Basin. Chinese Journal of Applied Ecology, 2005, 16(7): 1224-1229.
[31] Wang X Q, Jiang J, Lei J Q, et al . The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert. Acta Geographica Sinica, 2003, 58(4): 598-605.
[32] Neufeldt H, Da Silva J, Ayarza M A, et al . Land-use effects on phosphorus fractions in Cerrado Oxisols. Biology and Fertility of Soils, 2000, 31(1): 30-37.
[33] Chen F H, Huang W, Jin L Y, et al . Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Science China: Earth Science, 2011, 41(11): 1647-1657.
[34] Zhang S J, Wang T M, Wang T, et al . Spatial-temporal variation of the precipitation in Xinjiang and its abrupt change in recent 50 years. Journal of Desert Research, 2010, 30(3): 668-674.
[3] 贺金生, 韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论. 植物生态学报, 2010, 34(1): 2-6.
[4] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3938-3949.
[5] 朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征. 生态学报, 2013, 33(15): 4674-4682.
[6] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.
[7] 王维奇, 仝川, 贾瑞霞. 不同淹水频率下湿地土壤碳氮磷生态化学计量学特征. 水土保持学报, 2010, 24(3): 238-242.
[8] 李从娟, 徐新文, 孙永强, 等. 不同生境下三种荒漠植物叶片及土壤C、N、P的化学计量特征. 干旱区地理, 2014, 37(5): 976-984.
[9] 张元明, 王雪芹. 准噶尔荒漠生物结皮研究[M]. 北京: 科学出版社, 2008.
[11] 张立运, 陈昌笃. 论古尔班通古特沙漠植物多样性的一般特点. 生态学报, 2002, 22(11): 1923-1932.
[13] 中国科学院中国植被图编辑委员会. 100万中国植被图集[M]. 北京: 科学出版社, 2001.
[14] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
[16] 周李磊, 朱华忠, 钟华平, 等. 新疆伊犁地区草地土壤容重空间格局分析. 草业学报, 2016, 25(1): 64-75.
[18] 王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析. 地理学报, 2000, 55(5): 533-544.
[19] 曾全超, 李鑫, 董扬红, 等. 陕北黄土高原土壤性质及其生态化学计量的纬度变化特征. 自然资源学报, 2015, 30(5): 870-879.
[20] 杨阳, 刘秉儒, 杨新国, 等. 荒漠草原中不同密度人工柠条灌丛土壤化学计量特征. 水土保持通报, 2014, 34(5): 67-73.
[21] 青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析. 草业学报, 2015, 24(3): 38-47.
[23] 丁凡, 廉培勇, 曾德慧. 松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系. 生态学杂志, 2011, 30(1): 77-81.
[24] 潘军, 宋乃平, 吴旭东, 等. 荒漠草原不同种植年限人工柠条林土壤碳氮磷化学计量特征. 浙江大学学报(农业与生命科学版), 2015, 41(2): 160-168.
[25] 王建林, 钟志明, 王忠红, 等. 青藏高原高寒草原生态系统土壤碳磷比的分布特征. 草业学报, 2014, 23(2): 9-19.
[26] 陶冶, 张元明. 古尔班通古特沙漠4种草本植物叶片与土壤的化学计量特征. 应用生态学报, 2015, 26(3): 659-665.
[27] 刘作云, 杨宁. 紫色土丘陵坡地不同恢复阶段土壤生态化学计量特征. 中国农学通报, 2015, 31(18): 163-167.
[28] 杨菁, 谢应忠, 吴旭东, 等. 不同种植年限人工苜蓿草地植物和土壤化学计量特征. 草业学报, 2014, 23(2): 340-345.
[29] 樊江文, 张良侠, 张文彦, 等. 中国草地样带植物根系N、P元素特征及其与地理气候因子的关系. 草业学报, 2014, 23(5): 69-76.
[30] 王春玲, 郭泉水, 谭德远, 等. 准噶尔盆地东南缘不同生境条件下梭梭群落结构特征研究. 应用生态学报, 2005, 16(7): 1224-1229.
[31] 王雪芹, 蒋进, 雷加强, 等. 古尔班通古特沙漠短命植物分布及其沙面稳定意义. 地理学报, 2003, 58(4): 598-605.
[33] 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异. 中国科学: 地球科学, 2011, 41(11): 1647-1657.
[34] 张生军, 王天明, 王涛, 等. 新疆近50a来降水量时空变化及其突变分析. 中国沙漠, 2010, 30(3): 668-674. |