[1] Wang C S, Meng F D, Li X E, et al . Responses of alpine grassland ecosystem on Tibetan Plateau to climate change: A mini review. Chinese Journal of Ecology, 2013, 32(6): 1587-1595. [2] Liu Z, Shen W S, Che K J, et al . Ecological resilience of Qilian mountain nature reserve. Journal of Ecology and Environment, 2006, 22(3): 19-22, 75. [3] Hu Z Z. Ecosystem services of rangeland/grassland: Ⅱ Items of ecosystem services of rangeland/grassland. Grassland and Turf, 2005, 1: 3-10. [4] Wei W, Cao W X, Qi J, et al . Influence of grazing disturbance on stoichiometric characteristics of alpine rhododendron shrub lands underground soil nutrient pool. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1024-1029. [5] Gao Q, Yang X C, Yin C Y, et al . Estimation of biomass allocation and carbon density in alpine dwarf shrubs in Garzê Zangzu Auto-nomous Prefecture of Sichuan Province, China. Chinese Journal of Plant Ecology, 2014, 38(4): 355-365. [6] Lei L, Liu X D, Wang S L, et al . Assignment rule of alpine shrubs biomass and its relationships to environmental factors in Qilian Mountains. Ecology and Environmental Sciences, 2011, 20(11): 1602-1607. [7] Zhang W L, Ren S C, Yao X S, et al . Aboveground biomass and water storage allocation in alpine willow shrubs in the Qilian Mountains in China. Journal of Mountain Science, 2015, 12(1): 207-217. [8] Zhu Z H, Wang X A, Li Y N, et al . Predicting plant traits and functional types response to grazing in an alpine shrub meadow on the Qinghai-Tibet Plateau. Science China Earth Sciences, 2012, 55(5): 837-851. [9] Cao W X, Xu C L, Zhang D G, et al . Ecological responses of soil bulk density and water content to different non-grazing patterns in alpine rhododendron shrubland. Acta Prataculturae Sinica, 2011, 20(3): 28-35. [10] Dawes M A, Hagedorn F, Zumbrunn T, et al . Growth and community responses of alpine dwarf shrubs to in situ CO 2 enrichment and soil warming. New Phytologist, 2011, 191(3): 806-818. [11] Li H Q, Li Y N, Zhang F W, et al . Carbon budget of alpine Potentilla fruticosa shrub land based on comprehensive techniques of static chamber and biomass harvesting. Acta Ecologica Sinica, 2014, 34(4): 925-932. [12] Wang G R, Chen X R, Zhang J Z, et al . The temporal and spatial distribution of soil microorganism physiological floras in alpine shrubs of the eastern Qilian mountains. Acta Prataculturae Sinica, 2011, 20(2): 31-38. [13] Yang C D, Long R J, Chen X R, et al . Seasonal dynamics in soil microbial biomass and enzymatic activities under different alpine brushlands of the Eastern Qilian Mountains. Acta Prataculturae Sinica, 2011, 20(6): 135-142. [14] Moshe S. Root study: why is it behind other plant studies. American Journal of Plant Sciences, 2013, 4: 198-203. [15] Zhou H K, Zhou L, Zhao X Q, et al . Study of formation pattern of below-ground biomass in Potentilla fruticosa shrub. Acta Prataculturae Sinica, 2002, 11(2): 59-65. [16] Wu Y, Deng Y, Zhang J, et al . Root size and soil environments determine root lifespan: evidence from an alpine meadow on the Tibetan Plateau. Ecological Research, 2013, 28(3): 493-501. [17] McCormack M L, Dickie I A, Eissenstat D M, et al . Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207(3): 505-518. [18] Aerts R, Bakker C, De Caluwe H. Root turnover as determinant of the cycling of C, N and P in a dry heathland ecosystem. Biogeochemistry, 1992, 15(3): 175-190. [19] Bakker M R. Fine-root parameters as indicators of sustainability of forest ecosystems. Forest Ecology and Management, 1999, 122(1): 7-16. [20] Leppälammi-Kujansuu J, Aro L, Salemaa M, et al . Fine root longevity and carbon input into soil from below- and aboveground litter in climatically contrasting forests. Forest Ecology and Management, 2014, 326: 79-90. [21] Wang D H, Zhao Z, Zhang Y. The fine root of Robinia pseudoacacia and soil moisture in the Loess Plateau. Journal of Northwest Forestry University, 2012, 27(1): 1-5. [22] Liao L P, Chen C Y, Zhang J W, et al . Turnover of fine roots in pure and mixed Cunninghamia lanceolata and Michelia macclurei forests. Chinese Journal of Applied Ecology, 1995, 6(1): 7-10. [23] Shan J P, Tao D L, Wang M, et al . Fine roots turnover in a broad-leaved Korean pine forest of Changbai mountain. Chinese Journal of Applied Ecology, 1993, 4(3): 241-245. [24] Lin X H, Wang Z H, Chen Q B, et al . Vertical distribution and annual dynamics of fine roots of Hevea brasiliensis at different ages. Acta Ecologica Sinica, 2008, 28(9): 4128-4135. [25] Wachowski J, Landhäusser S M, Lieffers V J. Depth of root placement, root size and carbon reserves determine reproduction success of aspen root fragments. Forest Ecology and Management, 2014, 313: 83-90. [26] Jha P, Mohapatra K P, Dubey S K. Fine roots carbon mineralization and soil carbon stabilization under major tree species of the semi-arid region of India. National Academy Science Letters, 2014, 37(5): 413-418. [27] Yang L W, Zhang Y Q. Developing patterns of root systems of four cereal crops planted in dryland areas. Scientia Agricultura Sinica, 2011, 44(11): 2244-2251. [28] Li P, Li Z B, Zhao Z. Study of the method for determining sampling number for root investigation. Research of Soil and Water Conservation, 2003, 10(1): 146-149. [29] Boehm. Methods of Studying Root System[M]. Xue D R, Tan X L, translation. Beijing: Science Press, 1985. [30] Li P, Zhao Z, Li Z B, et al . Research on root distribution parameters of Robinia pseudoacacia on different sites in Chunhua county. Journal of Nanjing Forestry University (Natural Science Edition), 2002, 26(5): 32-36. [31] Zhao Z, Li P, Wang N J. Distribution patterns of root systems of main planting tree species in Weibei Loess Plateau. Chinese Journal of Applied Ecology, 2000, 11(1): 96-100. [32] Tomlinson H, Traore A, Teklehaimanot Z. An investigation of the root distribution of Parkia biglobosa in Burkina Faso, West Africa, using a logarithmic spiral trench. Forest Ecology and Management, 1998, 107(1): 173-182. [33] Parrotta J A, Lodge D J. Fine root dynamics in a subtropical wet forest following hurricane disturbance in Puerto Rico. Biotropica, 1991, 23(4): 343-347. [34] Li G D. TTC staining method to distinguish the root of life. China’s Grassland and Forage Grass, 1986, 3(1): 34-36. [35] Persson H A. The distribution and productivity of fine roots in boreal forests. Plant and Soil, 1983, 71(1-3): 87-101. [36] Persson H. Fine-root production, mortality and decomposition in forest ecosystems. Vegetation, 1980, 41(2): 101-109. [37] Wardle D A, Bardgett R D, Klironomos J N. Ecological linkages between aboveground and belowground biota. Science, 2004, 304: 1629-1633. [38] Plante P M, Rivest D, Vézina A, et al . Root distribution of different mature tree species growing on contrasting textured soils in temperate windbreaks. Plant and Soil, 2014, 380(1-2): 429-439. [39] Wang R L, Cheng R M, Xiao W F, et al . Fine root production and turnover in Pinus massoniana plantation in Three Gorges Reservoir Area of China. Chinese Journal of Applied Ecology, 2012, 23(9): 2346-2352. [40] Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 2000, 125(3): 389-399. [41] Hulugalle N R, Broughton K J, Tan D K Y. Fine root production and mortality in irrigated cotton, maize and sorghum sown in vertisols of northern New South Wales, Australia. Soil and Tillage Research, 2015, 146: 313-322. [42] Yu W T, Yu Y Q. Advances in the research of underground biomass. Chinese Journal of Applied Ecology, 2001, 12(6): 927-932. [43] Li Q S, Wang D M, Xin Z B, et al . Root distribution in typical sites of Lijiang ecotone and their relationship to soil properties. Acta Ecologica Sinica, 2014, 34(8): 2003-2011. [44] Yu X J, Jing Y Y, Xu C L, et al . Effect of film mulching on growth and crown and root characteristics of alfalfa in an alpine meadow. Acta Prataculturae Sinica, 2015, 24(6): 43-52. [45] Leppälammi-Kujansuu J, Salemaa M, Kleja D B, et al . Fine root turnover and litter production of Norway spruce in a long-term temperature and nutrient manipulation experiment. Plant and Soil, 2014, 374(1-2): 73-88. [1] 王常顺, 孟凡栋, 李新娥, 等. 青藏高原草地生态系统对气候变化的响应. 生态学杂志, 2013, 32(6): 1587-1595. [2] 刘庄, 沈渭寿, 车克钧, 等. 祁连山自然保护区生态承载力分析与评价. 生态与农村环境学报, 2006, 22(3): 19-22, 75. [3] 胡自治. 草原的生态系统服务: Ⅱ. 草原生态系统服务的项目. 草原与草坪, 2005, 1: 3-10. [4] 魏巍, 曹文侠, 祁娟, 等. 放牧干扰对高寒杜鹃灌丛草地地下养分库化学计量特征的影响. 中国生态农业学报, 2012, 20(8): 1024-1029. [5] 高巧, 阳小成, 尹春英, 等. 四川省甘孜藏族自治州高寒矮灌丛生物量分配及其碳密度的估算. 植物生态学报, 2014, 38(4): 355-365. [9] 曹文侠, 徐长林, 张德罡, 等. 杜鹃灌丛草地土壤容重与水分特征对不同休牧模式的响应. 草业学报, 2011, 20(3): 28-35. [11] 李红琴, 李英年, 张法伟, 等. 基于静态箱式法和生物量评估海北金露梅灌丛草甸碳收支. 生态学报, 2014, 34(4): 925-932. [12] 王国荣, 陈秀蓉, 张俊忠, 等. 东祁连山高寒灌丛草地土壤微生物生理功能群的动态分布研究. 草业学报, 2011, 20(2): 31-38. [13] 杨成德, 龙瑞军, 陈秀蓉, 等. 东祁连山高寒灌丛草地土壤微生物量及土壤酶季节性动态特征. 草业学报, 2011, 20(6): 135-142. [15] 周华坤, 周立, 赵新全, 等. 金露梅灌丛地下生物量形成规律的研究. 草业学报, 2002, 11(2): 59-65. [21] 王迪海, 赵忠, 张彦. 黄土高原刺槐细根与土壤水分特征. 西北林学院学报, 2012, 27(1): 1-5. [22] 廖利平, 陈楚莹, 张家武, 等. 杉木、火力楠纯林及混交林细根周转的研究. 应用生态学报, 1995, 6(1): 7-10. [23] 单建平, 陶大立, 王淼, 等. 长白山阔叶红松林细根周转的研究. 应用生态学报, 1993, 4(3): 241-245. [24] 林希昊, 王真辉, 陈秋波, 等. 不同树龄橡胶 ( Hevea brasiliensis ) 林细根生物量的垂直分布和年内动态. 生态学报, 2008, 28(9): 4128-4135. [27] 杨丽雯, 张永清. 4种旱作谷类作物根系发育规律的研究. 中国农业科学, 2011, 44(11): 2244-2251. [28] 李鹏, 李占斌, 赵忠. 根系调查取样点数确定方法的研究. 水土保持研究, 2003, 10(1): 146-149. [29] 伯姆. 根系研究法[M]. 薛德榕, 谭协麟译. 北京: 科学出版社, 1985. [30] 李鹏, 赵忠, 李占斌, 等. 淳化县不同立地上刺槐根系的分布参数. 南京林业大学学报 (自然科学版), 2002, 26(5): 32-36. [31] 赵忠, 李鹏, 王乃江. 渭北黄土高原主要造林树种根系分布特征的研究. 应用生态学报, 2000, 11(1): 96-100. [34] 李光棣. 辨别死活根的TTC染色法. 中国草原与牧草, 1986, 3(1): 34-36. [39] 王瑞丽, 程瑞梅, 肖文发, 等. 三峡库区马尾松人工林细根生产和周转. 应用生态学报, 2012, 23(9): 2346-2352. [42] 宇万太, 于永强. 植物地下生物量研究进展. 应用生态学报, 2001, 12(6): 927-932. [43] 李青山, 王冬梅, 信忠保, 等. 漓江水陆交错带典型立地根系分布与土壤性质的关系. 生态学报, 2014, 34(8): 2003-2011. [44] 鱼小军, 景媛媛, 徐长林, 等. 高寒区垄沟覆膜方式对苜蓿生长、根颈及根系特征的影响. 草业学报, 2015, 24(6): 43-52. |