[1] Lorite I J, García-Vila M, Carmona M, et al . Assessment of the irrigation advisory services’ recommendations and farmers’ irrigation management: A case study in southern Spain. Water Resources Management, 2012, 26: 2397-2419. [2] Rozema J, Flowers T. Crops for a salinized world. Science, 2008, 322: 1478-1480. [3] Liu H X, Guo X H, Guo Z G. Effect of silicon supply on tall fescue ( Festuca arundinacea ) growth under the salinization conditions. Acta Ecologica Sinica, 2011, 31(23): 7039-7046. [4] Farshidi M, Abdolzadeh A, Sadeghipour H R. Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola ( Brassica napus L.) plants. Acta Physiology Plant, 2012, 34: 1779-1788. [5] Liao Y, Peng Y G, Chen G Z. Research advances in plant salt tolerance mechanism. Acta Ecologica Sinica, 2007, 27(5): 2077-2089. [6] Zuccarini P. Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum, 2008, 52(1): 157-160. [7] Qian Q Q, Zai W S, Zhu Z J, et al . Effects of exogenous silicon on active oxygen scavenging systems in chloroplasts of cucumber ( Cucumis sativus L.) seedlings under salt stress. Journal of Plant Physiology and Molecular Biology, 2006, 32(1): 107-112. [8] Dai Z F, Wang J Z, Cheng J. A study on soil phosphorus non-point source pollution and environmental influence. Journal of Agro-Environment Science, 2006, 25(supplement): 323-327. [9] Gao C, Zhu J G, Zhu J Y, et al . Nitrogen export from an agriculture watershed in the Taihu Lake area, China. Environmental Geochemistry and Health, 2004, 26(2): 199-207. [10] Liang Y C, Sun W C, Zhu Y G, et al . Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 2007, 147: 422-428. [11] Currie H A, Perry C. Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 2007, 100: 1383-1389. [12] Liang Y C. Effect of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 1999, 209: 217-224. [13] Ashraf M, Rahmatullah M, Afzal R, et al . Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane ( Saccharum officinarum L.). Plant and Soil, 2010, 326: 381-391. [14] Liu H X, Wang K Y, Guo X H. Effect of addition of silicon on seed emergence and growth of tall fescue ( Festuca arundinacea ) under the different soil moistures. Acta Prataculturae Sinica, 2012, 21(1): 199-205. [15] Liu C F, Su J K, Huang W H. Studies on the salt-tolerant forage grass cultivars. Chinese Journal of Grassland, 1992, 6: 12-17. [16] Liu H X, Wang K Y, Guo Z G. Effect of silicon on some physiological-biochemical characteristics and quality of alfalfa under different soil moistures. Chinese Journal of Grassland, 2011, 33(3): 21-27. [17] Li H S. Plant Physiology and Biochemistry Experimental Principles and Techniques[M]. Beijing: Higher Education Press, 2006. [18] Zhang Z L, Qu W Q. Plant Physiology Experiment Instruction[M]. Third edition. Beijing: Higher Education Press, 2003. [19] Xiao L T, Wang S G. Plant Physiology Experimental Techniques[M]. Beijing: China Agriculture Press, 2005. [20] Zhang H S, Zhao G Q, Li M F, et al . Physiological responses of Pennisetum longissimum var. intermedium seedlings to PEG, low temperature and salt stress treatments. Acta Prataculturae Sinica, 2014, 23(2): 180-188. [21] Guntzer F, Keller C, Meunie J D. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 2012, 32: 201-213. [22] Zhu Y X, Li H L, Hu Y H, et al . Effect of silicate on salt resistance in tomato and underlying physiological mechanisms. Journal of Agro-Environment Science, 2015, 34(2): 213-220. [23] Lu Y, Lei J Q, Zeng F J, et al . Effect of salt treatments on the growth and ecophysiological characteristics of Haloxylon ammodendron . Acta Prataculturae Sinica, 2014, 23(3): 152-159. [24] Chen T, Wang G M, Shen W W, et al . Effect of salt stress on the growth and antioxidant enzyme activity of Kenaf seedlings. Plant Science Journal, 2011, 29(4): 493-501. [25] Cui J J, Zhang X H, Li Y T, et al . Effects of silicon addition on seedling morphological and physiological indicators of Glycyrrhiza uralensis under salt stress. Acta Prataculturae Sinica, 2015, 24(10): 214-220. [26] Liang Y C. Effect of silicon on leaf ultrastructure, chlorophyll content and photosynthetic activity of barley under salt stress. Pedosphere, 1998, 8(4): 289-296. [27] Shu L Z, Liu Y H. Effects of silicon on membrane lipid peroxidation and protective systems in the leaves of maize seedlings under salt stress. Journal of Xiamen University: Nat. Sci. Ed., 2001, 40(6): 1295-1300. [28] Hou Y H, Han X R, Yang J J, et al . Effects of silicon on cell membrane injury and the protective enzymes activity of cucumber seedling under salt stress. Chinese Agricultural Science Bulletin, 2005, 21(9): 252-254. [29] Wang X Y, Zhang Y L, Zhang H M, et al . Influence of silicon on activities of protective enzymes and MDA content in cucumber under salt stress soil. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(1): 221-224. [30] Wang Y J, Wang H X, Liu M D. Effect of silicon on physiological characteristics of kentucky bluegrass under salt stress. Chinese Journal of Grassland, 2012, 34(6): 13-17. [31] Liu H X, Song R, Guo P H, et al .Influences of interaction of soil moisture and silicon on photosynthetic characteristics and water use efficiency of tall fescue. Chinese Journal of Grassland, 2014, 36(6): 66-71. [32] Shen H, Mi Y W, Wang L. Effects of exogenous silicon on physiological characteristics of Lycium ruthenicum seedling under salt stress. Acta Agrestia Sinica, 2012, 5(3): 553-558. [33] Liu Y, Wang S W, Yin L N, et al . Studies on physiological mechanism of salt resistance improved by silicon in cucumber. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(5): 988-994. [3] 刘慧霞, 郭兴华, 郭正刚. 盐生境下硅对坪用高羊茅生物学特性的影响. 生态学报, 2011, 31(23): 7039-7046. [5] 廖岩, 彭友贵, 陈桂珠. 植物耐盐性机理研究进展. 生态学报, 2007, 27(5): 2077-2089. [7] 钱琼秋, 宰文珊, 朱祝军, 等. 外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响. 植物生理与分子生物学学报, 2006, 32(1): 107-112. [8] 戴照福, 王继增, 程炯. 土壤磷素非点源污染及其对环境影响的研究. 农业环境科学学报, 2006, 25(增刊): 323-327. [14] 刘慧霞, 王康英, 郭兴华. 不同土壤水分条件下硅对坪用高羊茅种子出苗及生物学特性的影响. 草业学报, 2012, 21(1): 199-205. [15] 刘春芳, 苏加楷, 黄文惠. 禾本科牧草耐盐性的研究. 中国草地, 1992, 6: 12-17. [16] 刘慧霞, 王康英, 郭正刚. 不同水分条件下硅对紫花苜蓿生理特性及品质的影响. 中国草地学报, 2011, 33(3): 21-27. [17] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006. [18] 张志良, 瞿伟菁. 植物生理学实验指导[M]. 第3版. 北京: 高等教育出版社, 2003. [19] 萧浪涛, 王三根. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2005. [20] 张怀山, 赵桂琴, 栗孟飞, 等. 中型狼尾草幼苗对PEG、低温和盐胁迫的生理应答. 草业学报, 2014, 23(2): 180-188. [22] 朱永兴, 李换丽, 胡彦宏, 等. 硅酸盐提高番茄抗盐性的效应与生理机制. 农业环境科学学报, 2015, 34(2): 213-220. [23] 鲁艳, 雷加强, 曾凡江, 等. NaCl处理对梭梭生长及生理生态特征的影响. 草业学报, 2014, 23(3): 152-159 [24] 陈涛, 王贵美, 沈伟伟, 等. 盐胁迫对红麻幼苗生长及抗氧化酶活性的影响. 植物科学学报, 2011, 29(4): 493-501. [25] 崔佳佳, 张新慧, 李月彤, 等. 外源Si对盐胁迫下甘草幼苗形态及生理指标的影响. 草业学报, 2015, 24(10): 214-220. [27] 束良佐, 刘英惠. 硅对盐胁迫下玉米幼苗叶片膜脂过氧化和保护系统的影响. 厦门大学学报:自然科学版, 2001, 40(6): 1295-1300. [28] 侯玉慧, 韩晓日, 杨家佳, 等. 硅对盐胁迫下黄瓜幼苗细胞膜伤害及其保护酶活性的影响. 中国农学通报, 2005, 21(9): 252-254. [29] 王喜艳, 张玉龙, 张恒明, 等. 盐胁迫下硅对黄瓜保护酶活性和膜质过氧化物的影响. 西北农业学报, 2009, 18(1): 221-224. [30] 王耀晶, 王厚鑫, 刘鸣达. 盐胁迫下硅对草地早熟禾生理特性的影响. 中国草地学报, 2012, 34(6): 13-17. [31] 刘慧霞, 宋锐, 郭鹏辉, 等. 硅和土壤水分互作对高羊茅苗期光合生理特性的影响. 中国草地学报, 2014, 36(6): 66-71. [32] 沈慧, 米永伟, 王龙. 外源硅对盐胁迫下黑果枸杞幼苗生理特性的影响. 草地学报, 2012, 5(3): 553-558. [33] 刘媛, 王仕稳, 殷俐娜, 等. 硅提高黄瓜幼苗抗盐能力的生理机制研究. 西北植物学报, 2014, 34(5): 988-994. |