[1] Hanin M, Brini F, Ebel C, et al . Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signaling & Behavior, 2011, 6(10): 1503-1509.
[2] Tunnacliffe A, Wise M J. The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007, 94(10): 791-812.
[3] Allagulova C R, Gimalov F R, Shakirova F M, et al . The plant dehydrins: structure and putative functions. Biochemistry (Moscow), 2003, 68(9): 945-951.
[4] Close T J. Dehydrins: a commonalty in the response of plant to dehydration and low temperature. Physiologia Plantarum, 1997, 100(2): 291-296.
[5] Close T J, Bray E A. Plant Responses to Cellular Dehydration during Environmental Stress[C]. Riverside Symposium in Plant Physiology 1993: University of California, Riverside. American Society of Plant Physiologists, 1993.
[6] Campbell S A, Close T J. Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytologist, 1997, 137: 61-74.
[7] Hara M. The multifunctionality of dehydrins: an overview. Plant Signaling & Behavior, 2010, 5(5): 503-508.
[8] Small E, Jomphe M. A synopsis of the genus Medicago (Leguminosae). Canadian Journal of Botany, 1989, 67(11): 3260-3294.
[9] Hao J H, Shi F L. Study on drought resistance of Medicago ruthenica accessions. Chinese Journal of Grassland, 2006, 28: 39-42.
[10] Campbell T A, Bao G, Xia Z L. Completion of the agronomic evaluations of Medicago ruthenica [(L.) Ledebour] germplasm collected in Inner Mongolia. Genetic Resources and Crop Evolution, 1999, 46(5): 477-484.
[11] Yang J Y, Zheng W, Tian Y, et al . Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 2011, 49(2): 275-284.
[12] Liu Z Y, Li X L, Qi X, et al . Alfalfa science research by Chinese scholars science 1950: history and main topics. Acta Prataculturae Sinica, 2015, 24(10): 58-69.
[13] Rorat T. Plant dehydrins-tissue location, structure and function. Cellular & Molecular Biology Letters, 2006, 11(4): 536-556.
[14] Battaglia M, Covarrubias A A. Late Embryogenesis Abundant (LEA) proteins in legumes. Frontiers in Plant Science, 2013, 4: 190.
[15] Tamura K, Stecher G, Peterson D, et al . MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 2013, 30(12): 2725-2729.
[16] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 2008, 3(6): 1101-1108.
[17] Kalemba E M, Bagniewska-Zadworna A, Ratajczak E. Multiple subcellular localizations of dehydrin-like proteins in the embryonic axes of common beech ( Fagus sylvatica L.) seeds during maturation and dry storage. Journal of Plant Growth Regulation, 2015, 34(1): 137-149.
[18] Zhu W, Zhang D, Lu X, et al . Characterisation of an SKn-type dehydrin promoter from wheat and its responsiveness to various abiotic and biotic stresses. Plant Molecular Biology Reporter, 2014, 32(3): 664-678.
[19] Yang Y, Sun X, Yang S, et al . Molecular cloning and characterization of a novel SK3-type dehydrin gene from Stipa purpurea . Biochemical and Biophysical Research Communications, 2014, 448(2): 145-150.
[20] Ochoa-Alfaro A E, Rodríguez-Kessler M, Pérez-Morales M B, et al . Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta, 2012, 235(3): 565-578.
[21] Lakshmi T V, Varalaxmi Y, Yadav S K, et al . Metabolic engineering of SK2-type of dehydrin1 (DHN1) gene isolated from Sorghum bicolor enhances tolerance to water-deficit and NaCl stresses in transgenic tobacco. Plant Omics, 2015, 8(6): 556.
[22] Chung E S, Cho C W, Kim K M, et al . Ectopic expression of soybean KS-type dehydrin, SLTI66 and SLTI629 conferred tolerance against osmotic and metal stresses of Escherichia coli and Arabidopsis . Journal of Plant Biotechnology, 2009, 36(1): 38-44.
[23] Shi J, Liu M, Chen Y, et al . Heterologous expression of the dehydrin-like protein gene AmCIP from Ammopiptanthus mongolicus enhances viability of Escherichia coli and tobacco under cold stress. Plant Growth Regulation, 2015, 79(1): 1-10.
[24] Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218: 1-14.
[25] Mouillon J, Eriksson S K, Harryson P. Mimicking the plant cell interior under water stress by macromolecular crowding: disordered dehydrin proteins are highly resistant to structural collapse. Plant Physiology, 2008, 148: 1925-1937.
[26] Graether S P, Boddington K F. Disorder and function: a review of the dehydrin protein family. Frontiers in Plant Science, 2014, 5: 576.
[27] Rahman L N, Chen L, Nazim S, et al . Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes-synergistic effects of lipid composition and temperature on secondary structure. Biochemistry and Cell Biology, 2010, 88(5): 791-807.
[28] KosováK, Víámvás P, Prášil I T. Wheat and barley dehydrins under cold, drought, and salinity-what can LEA-II proteins tell us about plant stress response. Frontiers in Plant Science, 2014, 5: 343.
[29] Alsheikh M K, Svensson J T, Randall S K. Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant, Cell & Environment, 2005, 28(9): 1114-1122.
[30] Hara M, Fujinaga M, Kuboi T. Metal binding by citrus dehydrin with histidine-rich domains. Journal of Experimental Botany, 2005, 56: 2695-2703.
[31] Zhang L, Ohta A, Takagi M, et al . Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. Journal of Biochemistry, 2000, 127(4): 611-616.
[32] Lan Y, Cai D, Zheng Y Z. Expression of three different group soybean lea genes enhanced stress tolerance in Escherichia coli . Journal of Integrative Plant Biology, 2005, 42(5): 613-621.
[9] 郝建辉, 石凤翎. 不同扁蓿豆材料抗旱性比较研究. 中国草地学报, 2006, 28(3): 39-42.
[12] 刘志英, 李西良, 齐晓, 等. 1950年以来中国学者对苜蓿属的研究: 历史脉络与启示. 草业学报, 2015, 24(10): 58-69. |