[1] Bais H P, Ravishankar G A. Cichorium intybus L-cultivation, processing, utility, value addition and biotechnology, with an emphasis on current status and future prospects. Journal of the Science of Food and Agriculture, 2001, 81(5): 467-484. [2] Silva R. Use of inulin as a natural texture modifier. Cereal Foods World, 1996, 41(10): 792-794. [3] Meyer D, Stasse-Wolthuis M. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. European Journal of Clinical Nutrition, 2009, 63(11): 1277-1289. [4] Zhao L, Chen D D, Liang M X, et al .Comparative study on regeneration and genetic transformation between puna chicory and commander chicory. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(11): 2169-2176. [5] Zhao Y W, Wang Y J, Bu H Y, et al . Transformation of Cichorium intybus with the AtNHX1 gene and salinity tolerance of the transformants. Acta Prataculturae Sinica, 2009, 18(3): 103-109. [6] Matvieieva N, Shakhovsky A, Kvasko O, et al . High frequency genetic transformation of Cichorium intybus L. using npt ll gene as a selective marker. Cytology and Genetics, 2015, 49(4): 220-225. [7] Matvieieva N, Kishchenko O, Potrochov A, et al . Regeneration of transgenic plants from hairy roots of Cichorium intybus L. var. Foliosum Hegi. Cytology and Genetics, 2011, 45(5): 277-281. [8] Profumo P, Gastaldo P, Caffaro L, et al . Callus induction and plantlet regeneration in Cichorium intybus L.: II. Effect of different hormonal treatments. Protoplasma, 1985, 126(3): 215-220. [9] Nandagopal S, Ranjitha Kumari B. Effectiveness of auxin induced in vitro root culture in chicory. Journal of Central European Agriculture, 2007, 8(1): 73-80. [10] Maroufi A, Karimi M, Mehdikhanlou K, et al . Regeneration ability and genetic transformation of root type chicory ( Cichorium intybus var. sativum). African Journal of Biotechnology, 2016, 11(56): 11874-11886. [11] Yucesan B, Turker A U, Gurel E. TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory ( Cichorium intybus L.). Plant Cell, Tissue and Organ Culture, 2007, 91(3): 243-250. [12] Doliński R, Olek A. Micropropagation of wild chicory ( Cichorium intybus L. var. silvestre Bisch.) from leaf explants. Acta Scientiarum Polonorum, Hortorum Cultus=Ogrodnictwo, 2013, 12(6): 33-44. [13] Park E, Lim H. Establishment of an efficient in vitro plant regeneration system in chicory ( Cichorium intybus L. var. sativus). International Symposium on Vegetable Quality of Fresh and Fermented Vegetables, 1997, 483: 367-370. [14] Abdin M, Ilah A. Plant regeneration through somatic embryogenesis from stem and petiole explants of Indian chicory ( Cichorium intybus L.). Indian Journal of Biotechnology, 2007, 6(2): 250. [15] Nandagopal S, Ranjitha Kumari B. Adenine sulphate induced high frequency shoot organogenesis in callus and in vitro flowering of Cichorium intybus L. cv. Focus-a potent medicinal plant. Acta Agriculturae Slovenica, 2006, 87(2): 415-425. [16] Pieron S, Watillon B. Expression of a chimeric GUS gene construct as a tool to study nodule morphogenesis in chicory leaves. Plant Cell, Tissue and Organ Culture, 2001, 66(3): 159-165. [17] Williams F M K, Davey M R, Power J B, et al . Chicory ( Cichorium intybus L.) expressing the lol1 gene exhibits inhibition of ice recrystallisation[C]// EUCARPIA Leafy Vegetables 2003. Proceedings of the EUCARPIA Meeting on Leafy Vegetables Genetics and Breeding, Noordwijkerhout, Netherlands, 19-21 March 2003. [18] Zhang L J, Cheng L M, Du J Z, et al . Cotton APX gene enhances stress tolerance of Cichorium intybus . Acta Agrestia Sinica, 2012, 20(1): 152-158. [19] Zhang L J, Cheng L M, Du J Z, et al . Introduction of TaNHX 2 gene enhanced salt tolerance of transgenic puna chicory plants. Acta Ecologica Sinica, 2011, 31(18): 5264-5272. [20] Cheng L M, Sun Y, Wang Y X. A research of several elements that affect transformation of Cichorium intybus [C]// The Abstract of Assembly of National Plant Growth Regulation Symposium, 2007. [21] Li X, Yu E, Fan C, et al . Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta, 2012, 236(2): 579-596. [22] Gilbert N. A hard look at GM crops. Nature, 2013, 497: 24-26. [23] Brévault T, Heuberger S, Zhang M, et al . Potential shortfall of pyramided transgenic cotton for insect resistance management. Proceedings of the National Academy of Sciences, 2013, 110(15): 5806-5811. [24] Tang L, Cai H, Zhai H, et al . Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa ( Medicago sativa L.). Plant Cell, Tissue and Organ Culture (PCTOC), 2014, 118(1): 77-86. [25] Xiang B J, Li C J, Zhang J, et al . Studies on cloning and transformation of CBF 1 gene of maize grass. Animal Husbandry and Feed Science, 2013, 5(4): 189. [26] Song S F, Cao F, Yang P Z, et al . High efficient system establishment on plant regeneration and study on genetics transformation in puna chicory ( Cichorium intybus L.). Molecular Plant Breeding, 2006, 4(4): 565-570. [27] 赵龙, 陈丹丹, 梁明祥, 等. 2 种菊苣再生体系及遗传转化效率的比较. 西北植物学报, 2012, 32(11): 2169-2176. [28] 赵宇伟, 王英娟, 步怀宇, 等. AtNHX 1 基因对菊苣的转化和耐盐性研究.草业学报, 2009, 18(3): 103-109. [29] 张丽君, 程林梅, 杜建中, 等. 导入 APX 基因提高了普那菊苣植株的抗逆性. 草地学报, 2012, 20(1): 152-158. [30] 张丽君, 程林梅, 杜建中, 等. 导入 TaNHX 2 基因提高了转基因普那菊苣的耐盐性. 生态学报, 2011, 31(18): 5264-5272. [31] 程林梅, 孙毅, 王亦学. 影响菊苣遗传转化受体系统几种因素的研究[C]// 2007 年全国植物生长物质研讨会论文摘要汇编, 2007. [32] 宋书锋, 曹凤, 杨培志, 等. 普那菊苣高效再生体系建立和遗传转化研究. 分子植物育种, 2006, 4(4): 565-570. |