[1] Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 2002, 29(1): 23-39. [2] Brunner A M, Yakovlev I A, Strauss S H. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology, 2004, 4: 14. [3] Remans T, Smeets K, Opdenakker K, et al . Normalization of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta, 2008, 227: 1343-1349. [4] Hong S Y, Seo P J, Yang M S, et al . Exploring valid reference genes for gene expression studies in Brachypodium disttachyon by real-time PCR. BMC Plant Biology, 2008, 8: 112. [5] Reddy P S, Reddy D S, Sharma K K, et al . Cloning and validation of reference genes for normalization of gene expression studies in pearl millet [ Pennisetum glaucum (L.) R. Br] by quantitative real-time PCR. Plant Gene, 2015, 2(1): 35-42. [6] Long X Y, Wang J R, Ouellet T, et al . Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Molecular Biology, 2010, 74: 307-311. [7] Jiang X M, Yan H D, Zhang X Q, et al . Candidate reference gene selection for quantitative RT-PCR normalization in Orchardgrass ( Dactylis glomerata L.) root tissue. Acta Agrestia Sinica, 2014, 22(4): 847-853. 蒋晓梅, 严海东, 张新全, 等. 鸭茅根组织实时荧光定量PCR分析中候选内参基因的筛选. 草地学报, 2014, 22(4): 847-853. [8] Zhou L, Zhang L Y, Zhang C X, et al . Screening of reference genes for real-time fluorescence quantitative PCR in apple ( Malus domestica ). Journal of Fruit Science, 2012, 29(6): 965-970. 周兰, 张利义, 张彩霞, 等. 苹果实时荧光定量PCR分析中内参基因的筛选. 果树学报, 2012, 29(6): 965-970. [9] Xiao C, Yan J W, Long G Y, et al . Stability evaluation of reference genes in citrus. Journal of Fruit Science, 2012, 29(6): 978-984. 肖翠, 严佳文, 龙桂友, 等. 柑橘内参基因的稳定性评价. 果树学报, 2012, 29(6): 978-984. [10] Vandesompele J, Preter D K, Pattyn F, et al . Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal reference genes. Genome Biology, 2002, 3(7): 1-12. [11] Andersen C L, Jensen J L, Orntoft T F. Normalization of realtime quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Researcher, 2004, 64(15): 5245-5250. [12] Pfaffl M W, Tichopad A, Prgomet C, et al . Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlation. Biotechnology Letter, 2004, 26(6): 509-515. [13] Julia M L, John R R, Danny J D, et al . Validation of reference genes for quantitative RT-PCR studies of genes expression in perennial ryegrass ( Lolium perenne L.). BMC Molecular Biology, 2010, 11: 8. [14] Ohdan T, Fmncisco P B, Sawada T. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. Journal of Experiment Botany, 2005, 56: 3229-3244. [15] Winnepenninckx B, Backeljau, De Wachtert R. Investigation of molluscan phylogeny on the basis of 18s rRNA sequences. Molecular Biology and Evolution, 1997, 13(10): 1306-1317. [16] Zhu H S, Chen M D, Wen Q F, et al . Cloning of 18s rRNA gene from Luffa cylindrical and its application as an internal standard. Journal of Nuclear Agricultural Sciences, 2006, 30(1): 35-41. [17] Loss I S, Czer Winski D K, Wechser M A. Optimization of quantitative real-time RT-PCR parameters for the study of lymphoid malignancies. Leukenmia, 2003, 17(4): 789-795. [18] Chen Y, Wang G, Zhao J X. The Actin of higher plants. Bulletin of Biology, 2003, 38(1): 13-15. [19] Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. EMBO Reports, 2008, 9(6): 536-542. [20] Negrutskii B S, Elskaya A V. Eukaryotic translation elongation factor 1 alpha: structure, expression and possible role in aminoacyl-tRNA channeling. Progress in Nucleic Acid Research and Molecular Biology, 1998, 60: 47-78. [21] James E D, Ruth C M. Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress. Plant Science, 2009, 176: 390-396. [22] Zhu X, Li X, Chen W, et al . Evaluation of new reference genes in papaya for accurate transcript normalization under different experiment conditions. Plos One, 2012, 7(8): e4405. [23] Kim B R, Nam H Y, Kim S U. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Letters, 2003, 25(21): 1869-1872. [24] Schmidt G W, Delaney S K. Stable internal reference genes for normalization of real-time RT-PCR in tobacco ( Nicotiana tabacum ) during development and abiotic stress. Molecular Genet Genomics, 2010, 283(3): 223-241. [25] Reid K E, Olsson N, Schlosser J, et al . An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology, 2006, 6: 27. [26] Czerchowski T, Stitt M, Altmann T, et al . Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis . Plant Physiology, 2005, 139: 5-17. |