[1] Tao S, Duanmu Y, Dong H, et al . A high-concentrate diet induced colonic epithelial barrier disruption is associated with the activating of cell apoptosis in lactating goats. BMC Vet Res, 2014, 10: 235. [2] Suburu J, Shi L, Wu J, et al . Fatty acid synthase is required for mammary gland development and milk production during lactation. American Journal of Physiology Endocrinology and Metabolism, 2014, 306(10): 1132-1143. [3] Zhao F Q, Keating A F. Expression and regulation of glucose transporters in the bovine mammary gland. Journal of Dairy Science, 2007, 90: 76-86. [4] Dan H C, Sun M, Yang L, et al . Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. The Journal of Biological Chemistry, 2002, 277(38): 35364-35370. [5] Inoki K, Li Y, Zhu T, et al . TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biology, 2002, 4(9): 648-657. [6] Manning B D, Tee A R, Logsdon M N, et al . Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Molecular Cell, 2002, 10(1): 151-162. [7] Potter C J, Pedraza L G, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nature Cell Biology, 2002, 4(9): 658-665. [8] Berwick D C, Hers I, Heesom K J, et al . The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. The Journal of Biological Chemistry, 2002, 277(37): 33895-33900. [9] Kohn A D, Summers S A, Birnbaum M J, et al . Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. The Journal of Biological Chemistry, 1996, 271(49): 31372-31378. [10] Magun R, Burgering B M, Coffer P J, et al . Expression of a constitutively activated form of protein kinase B (c-Akt) in 3T3-L1 preadipose cells causes spontaneous differentiation. Endocrinology, 1996, 137(8): 3590-3593. [11] Schwertfeger K L, McManaman J L, Palmer C A, et al . Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. Journal of Lipid Research, 2003, 44(6): 1100-1112. [12] Boxer R B, Stairs D B, Dugan K D, et al . Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metabolism, 2006, 4(6): 475-490. [13] Chodosh L A, Gardner H P, Rajan J V, et al . Protein kinase expression during murine mammary development. Developmental Biology, 2000, 219(2): 259-276. [14] Khafipour E, Krause D O, Plaizier J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 2009, 92(3): 1060-1070. [15] Dong H, Wang S, Jia Y, et al . Long-term effects of subacute ruminal acidosis (SARA) on milk quality and hepatic gene expression in lactating goats fed a high-concentrate diet. PloS One, 2013, 8(12): e82850. [16] Anderson S M, Rudolph M C, McManaman J L, et al . Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis. Breast Cancer Research, 2007, 9(1): 204. [17] Rudolph M C, Monks J, Burns V, et al . Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. American Journal of Physiology Endocrinology and Metabolism, 2010, 299(6): 918-927. [18] Li N. Function of SREBP1 in The Milk Synthesis of Dairy Cow Mammary Gland Epithelial Cell[D]. Harbin: Northeast Agricultural University, 2014. 李楠. SREBP1在奶牛乳腺上皮细胞乳脂合成中的功能研究[D]. 哈尔滨: 东北农业大学, 2014. [19] Xu H F, Luo J, Li F, et al . Effects of SREBP-1 over-expression on fatty acid metabolism related genes expression in goats. Chinese Journal of Biotechnology, 2012, 28(11): 1306-1316. 许会芬, 罗军, 李芳, et al . 山羊SREBP-1基因的超表达对脂肪酸代谢相关基因表达的影响. 生物工程学报, 2012, 11: 1306-1316. [20] Lin Y, Sun X, Hou X, et al . Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow. BMC Veterinary Research, 2016, 12(1): 81. [21] Miller J K, Brzezinska-Slebodzinska E, Madsen F C. Oxidative stress, antioxidants, and animal function. Journal of Dairy Science, 1993, 76(9): 2812-2823. [22] Celi P. The role of oxidative stress in small ruminants’ health and production. Revista Brasileira de Zootecnia, 2010, 39: 348-363. |