[1] Guo H M, Xia T C, Zhu W, et al . Effect of additives on the quality and aerobic stability of rice straw silage. Acta Prataculturae Sinica, 2017, 26(2): 190-196. 郭海明, 夏天婵, 朱文, 等. 青贮添加剂对稻草青贮品质和有氧稳定性的影响. 草业学报, 2017, 26(2): 190-196. [2] Jeffery M C, Rezamand P, Drewnoski M E, et al . Effect of homofermentative lactic acid bacteria and exogenous hydrolytic enzymes on the ensiling characteristics and rumen degradability of alfalfa and corn silages. Microbial Inoculant, 2016, 32(5): 598-604. [3] Mcallister T A, Hristov A N, Beauchemin K A, et al . Enzymes in ruminant diets[M]//Bedford M R, Partridge G G. Enzymes in Farm Animal Nutrition. U.K: CAB International, 2001: 273-298. [4] Beauchemin K A, Morgavi D P, Mcallister T A, et al . The use of feed enzymes in ruminant diets[M]//Garnsworthy P C, Wiseman P J. Recent Advances in Animal Nutrition. Notthingham: Nottingham University Press, 2001: 297-322. [5] Beauchemin K A, Colombatto D, Morgavi D P, et al . Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. Journal of Animal Science, 2003, 81(Suppl. 2): E37-E47. [6] Daniel L, Javier H, Rojo R, et al . In vitro gas production kinetics and degradability of a diet for growing lambs: effect of fibrolytic enzyme products at different dose levels. Italian Journal of Animal Science, 2016, 15(3): 453-460. [7] Wallace R J, Wallace S J A, Mckain N, et al . Influence of supplementary fibrolytic enzymes on the fermentation of corn and grass silages by mixed ruminal microorganisms in vitro . Journal of Animal Science, 2001, 79: 1905-1916. [8] Colombatto D, Herva’S G, Yang W Z, et al . Effects of enzyme supplementation of a total mixed ration on microbial fermentation in continuous culture, maintained at high and low pH. Journal of Animal Science, 2003, 81: 2617-2627. [9] Wang Y, Mcallister T A, Rode L M, et al . Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the rumen simulation technique (Rusitec). British Journal of Nutrition, 2001, 85: 325-332. [10] Giraldo L A, Ranilla M, Tejido M L, et al . Effect of enzyme application method on in vitro rumen fermentation of tropical forages. Animal Feed Science and Technology, 2004, 13: 63-66. [11] Hu H L, Lu D X, Liu D C, et al . Effects of different dietary NFC/NDF ratios on ruminal pH, VFA and lactate content in dairy goats. Chinese Journal of Animal Nutrition, 2010, 22(3): 595-601. 胡红莲, 卢德勋, 刘大程, 等. 饲粮不同NFC/NDF比对奶山羊瘤胃 pH、挥发性脂肪酸及乳酸含量的影响. 动物营养学报, 2010, 22(3): 595-601. [12] Wei D Y, Zhu W Y, Mao S Y. Effects of different dietary NFC/NDF ratios on the ruminal fermentation and the changes of the rumen microbial community of goats. Scientia Agricultura Sinica, 2012, 45(7): 1392-1398. 魏德泳, 朱伟云, 毛胜勇. 饲粮不同 NFC/NDF 比对山羊瘤胃发酵与瘤胃微生物区系结构的影响. 中国农业科学, 2012, 45(7): 1392-1398. [13] Colombatto D, Mould F L, Bhat M K, et al . Use of fibrolytic enzymes to improve the nutritive value of ruminant diets. A biochemical and in vitro rumen degradation assessment. Animal Feed Science and Technology, 2003, 107: 201-209. [14] Menke K H, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 1988, 28(1): 7-55. [15] Zhang L Y. Feed Analysis and Quality Testing Technology[M]. Beijing: China Agricultural University Press, 2003. 张丽英. 饲料分析及质量检测技术[M]. 北京: 中国农业大学出版社, 2003. [16] Van Soest P J, Sniffen C J, Mertens D R R, et al . A net protein system for system for cattle: the rumen submodel for nitrogen[C]//Owens F N. Protein Requirements for Cattle: Proceedings of an International Symposium. Stillwater: Oklahoma State University, 1981: 265. [17] Carro M D, Miller E L. Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semicontinuous culture system (rusitec). British Journal of Nutrition, 1999, 82: 149-157. [18] France J, Dijkstra J, Dhanoa M S, et al . Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro : derivation of models and other mathematical considerations. British Journal of Nutrition, 2000, 83: 143-150. [19] Gado H M, Salem A Z M, Robinson P H, et al . Influence of exogenous enzymes on nutrient digestibility, extent of ruminal fermentation as well as milk production and composition in dairy cows. Animal Feed Science and Technology, 2009, 154(1): 36-46. [20] Eun J S, Beauchemin K A. Enhancing in vitro degradation of alfalfa hay and corn silage using feed enzymes. Journal of Dairy Science, 2007, 90(6): 2839-2851. [21] Eun J S, Beauchemin K A. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production. Journal of Dairy Science, 2005, 88(6): 2140-2153. [22] Yang H E, Son Y S, Beauchemin K A. Effects of exogenous enzymes on ruminal fermentation and degradability of alfalfa hay and rice straw. Asian-Australasian Journal of Animal Sciences, 2011, 24(1): 56-64. [23] Elghandour M M Y, Salem A Z M, Gonzalez-Ronquillo M, et al . Effects of exogenous enzymes on in vitro gas production kinetics and ruminal fermentation of four fibrous feeds. Animal Feed Science and Technology, 2013, 179(1): 46-53. [24] Nsereko V L, Beauchemin K A, Morgavi D P, et al . Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows. Canadian Journal of Microbiology, 2002, 48(1): 14-20. [25] Klyosov A A. Trends in biochemistry and enzymology of cellulose degradation. Biochemistry, 1990, 29(47): 10577-10585. [26] Awawdeh M S, Obeidat B S. Effect of supplemental exogenous enzymes on performance of finishing Awassi lambs fed olive cake-containing diets. Livestock Science, 2011, 138(1): 20-24. [27] Krause K M, Oetzel G R. Understanding and preventing subacuteruminal acidosis in dairy herds: a review. Animal Feed Science and Technology, 2006, 126: 215-236. [28] Khafipour E, Krause D O, Plaizier J C. A grain-based subacuteruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 2009, 92(3): 1060-1070. [29] Ghorbani G R, Morgavi D P, Beauchemin K A, et al . Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. Journal of Animal Science, 2002, 80: 1977-1986. [30] Arriola K G, Kim S C, Staples C R, et al . Effect of fibrolytic enzyme application to low-and high-concentrate diets on the performance of lactating dairy cattle. Journal of Dairy Science, 2011, 94(2): 832-841. [31] Giraldo L A, Tejido M L, Ranilla M J, et al . Effects of exogenous cellulase supplementation on microbial growth and ruminal fermentation of a high-forage diet in Rusitec fermenters. Journal of Animal Science, 2007, 85(8): 1962-1970. [32] Romero J L, Macias E G, Ma Z X, et al . Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation. Journal of Dairy Science, 2016, 99(5): 3486-3496. [33] Khafipour E, Li S, Plaizier J C, et al . Rumen microbiome composition determined using two nutritional models of subacuteruminal acidosis. Applied and Environmental Microbiology, 2009, 75(22): 7115-7124. [34] Lu L, Xu Z Z, Zhao F R, et al . Effects of different protein feeds on rumen fermentation parameters and degradation rate of nutrients. China Dairy Cattle, 2007, (5): 10-13. 鲁琳, 许曾曾, 赵风茹, 等. 不同蛋白质饲料原料对瘤胃发酵参数和营养物质降解率的影响. 中国奶牛, 2007, (5): 10-13. [35] Russell J B, O’Connor J D, Fox D G, et al . A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science, 1992, 1002: 3551-3561. |