[1] Qi Z Q, Yu Y X, Hu Y G, et al . Current status and future tasks of the Medicago sativa industry in China. Acta Prataculturae Sinica, 2008, 17(1): 107-113. 戚志强, 玉永雄, 胡跃高, 等. 当前我国苜蓿产业发展的形势与任务. 草业学报, 2008, 17(1): 107-113. [2] Hua Y, Cai H, Bai X, et al . Research progress on plant salt stress tolerance genetic engineering. Journal of Northeast Agricultural University, 2010, 41(10): 150-156. 化烨, 才华, 柏锡, 等. 植物耐盐基因工程研究进展. 东北农业大学学报, 2010, 41(10): 150-156. [3] Peng J Q, Liu Y Q, Yang Y F, et al . Importance and technology progress in containing the soil salinization and desertification. Tianjin Agricultural Sciences, 2008, 14(4): 26-29. 彭津琴, 刘永强, 杨玉芳, 等. 遏制土壤盐碱化、荒漠化的必要性及技术进展. 天津农业科学, 2008, 14(4): 26-29. [4] Tian C X, Zhang Y M, Wang K, et al . The anatomical structure responses in alfalfa to salinity-alkalinity stress of NaHCO 3 . Acta Prataculturae Sinica, 2014, 23(5): 133-142. 田晨霞, 张咏梅, 王凯, 等. 紫花苜蓿组织解剖结构对NaHCO 3 盐碱胁迫的响应. 草业学报, 2014, 23(5): 133-142. [5] Hasegawa P M, Bressan R A, Zhu J K, et al . Plant cellular and molecular responses to high salinity. Plant Biology, 2000, 51(51): 463-499. [6] Yang X Y, Yang J S, Liu G M, et al . Changes in soil fertilities and crop growth after transferring paddy soil to upland soil. Chinese Journal of Soil Science, 2006, 37(4): 675-679. 杨晓英, 杨劲松, 刘广明, 等. 盐碱地稻田旱作后土壤肥力变化及其对作物生长的影响. 土壤通报, 2006, 37(4): 675-679. [7] Li H W, Ma D M, Xu X, et al . Advance and prospects on salt-tolerant transgenic alfalfa. Northern Horticulture, 2012, (19): 184-188. 李会文, 麻冬梅, 许兴, 等. 苜蓿耐盐碱转基因研究进展与展望. 北方园艺, 2012, (19): 184-188. [8] Das-Chatterjee A, Goswami L, Maitra S, et al . Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Letters, 2006, 580(16): 3980-3988. [9] Jing Y X, Yuan Q H. Effects of salt stress on seedling growth of alfalfa ( Medicago sativa ) and ion distribution in different alfalfa organs. Acta Prataculturae Sinica, 2011, 20(2): 134-139. 景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响. 草业学报, 2011, 20(2): 134-139. [10] Jin T, Chang Q, Li W, et al . Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell, Tissue and Organ Culture (PCTOC), 2010, 100(2): 219-227. [11] Liu J, Cai H, Liu Y, et al . A study on physiological characteristics and comparison of salt tolerance of two Medicago sativa at the seedling stage. Acta Prataculturae Sinica, 2013, 22(2): 250-256. 刘晶, 才华, 刘莹, 等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较. 草业学报, 2013, 22(2): 250-256. [12] Zhang L Q, Zhang F Y, Hasi Agula. Research progress on alfalfa salt tolerance. Acta Prataculturae Sinica, 2012, 21(6): 296-305. 张立全, 张凤英, 哈斯阿古拉. 紫花苜蓿耐盐性研究进展. 草业学报, 2012, 21(6): 296-305. [13] Jiang J, Yang B L, Xia T, et al . Genetic diversity analysis of salt tolerant germplasm resources of alfalfa. Acta Prataculturae Sinica, 2011, 20(5): 119-125. 姜健, 杨宝灵, 夏彤, 等. 紫花苜蓿耐盐种质资源的遗传多样性分析. 草业学报, 2011, 20(5): 119-125. [14] Wang J F, Li Y Q, Guo Y Q. Effects of saline alkali soil on saline alkali soil. Shangdong Journal of Animal Science and Veterinary Medicine, 1999, (5): 20-21. 王金芬, 李玉芹, 郭玉泉. 耐盐碱牧草改良盐碱土的效果. 山东畜牧兽医, 1999, (5): 20-21. [15] Wang X P, Li W Q. A report on the quality inspection and analysis of several different alfalfa varieties. Contemporary Animal Husbandry, 2004, (5): 39. 王学鹏, 李文全. 几个不同品种紫花苜蓿质量检验分析报告. 当代畜牧, 2004, (5): 39. [16] Tian F P, Wang S M, Guo Z G, et al . Relationship between proline content and water content, single plant dry matter, and drought resistance of alfalfa. Pratacultural Science, 2004, 21(1): 3-6. 田福平, 王锁民, 郭正刚, 等. 苜蓿脯氨酸含量和含水量、单株干质量与抗旱性的相关性研究. 草业科学, 2004, 21(1): 3-6. [17] Zhang H N, Li X J, Li C D, et al . Effects of overexpression of wheat superoxide dismutase (SOD) genes on salt tolerant capability in Tobacco. Acta Agronomica Sinica, 2008, 34(8): 1403-1408. 张海娜, 李小娟, 李存东, 等. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响. 作物学报, 2008, 34(8):1403-1408. [18] Duanmu H, Wang Y, Bai X, et al . Wild soybean roots depend on specific transcription factors and oxidation reduction related genes in response to alkaline stress. Functional & Integrative Genomics, 2015, 15(6): 651-660. [19] Wu P, Liu T, Qin G X, et al . Full-length cDNA cloning and characterization of a hypothetic protein gene responsive to the infection of bombyxmoricytoplasmic polyhedrosis virus. Science of Sericulture, 2010, 36(6): 937-943. 吴萍, 刘挺, 覃光星, 等. 家蚕质型多角体病毒感染应答的假定蛋白基因全长cDNA克隆与表达特征分析. 蚕业科学, 2010, 36(6): 937-943. [20] Bitinaite J. USER TM friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Research, 2007, 35(6): 1992-2002. [21] Geuflores F, Noureldin H H, Nielsen M T, et al . USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Research, 2007, 35(7): e55. [22] Jones H D, Wilkinson M, Doherty A, et al . High throughput Agrobacterium transformation of wheat: a tool for functional genomics[C]//Wheat Production in Stressed Environments. Proceedings of the 7th International Wheat Conference, 2007: 693-699. [23] Cortazar B, Koydemir H C, Tseng D, et al . Field quantification of plant chlorophyll content using Google Glass[C]//SPIE BiOS. International Society for Optics and Photonics, 2015. [24] Liu T Z, Zhao X P. Study of apricot leaves plasma membrane permeability by electric conductivity method. Journal of Hebei Agricultural Sciences, 2008, 12(1): 33-34. 刘铁铮, 赵习平. 电导法测定杏叶片细胞质膜相对透性的研究. 河北农业科学, 2008, 12(1): 33-34. [25] Zhang T X, Lin Z J, Cao M H, et al . Study on determination of pepper leaf cell membrane permeability of the electrical conductivity method. Fujian Science & Technology of Tropical Crops, 2013, (1): 19-21. 张天翔, 林宗铿, 曹明华, 等. 电导率法测定甜椒叶片细胞质膜相对透性的研究. 福建热作科技, 2013, (1): 19-21. [26] Alt D. The cat-method for the chemical analysis of horticultural substrates (refereed). Acta Horticulturae, 1997, 450(450): 87-96. [27] Webb B L. Response of seedling alfalfa ( Medicago sativa ) to four postemergence herbicides. Weed Technology, 1991, 5(4): 736-738. [28] Zhang Y, Liu J, Zhou Y, et al . Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human. Journal of Hazardous Materials, 2013, 260(6): 1100-1107. [29] Winicov I, Bastola D R. Transgenic overexpression of the transcription factor alfin1 enhances expression of the endogenous MsPRP 2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiology, 1999, 120(2): 473-480. [30] Liu L, Fan X D, Wang F W, et al . Coexpression of ScNHX 1 and ScVP in transgenic hybrids improves salt and saline-alkali tolerance in alfalfa ( Medicago sativa L.). Journal of Plant Growth Regulation, 2013, 32(1): 1-8. [31] Wang Z Y, Song F B, Cai H, et al . Over-expressing GsGST14 from Glycine soja enhances alkaline tolerance of transgenic Medicago sativa . Biologia Plantarum, 2012, 56(3): 1-5. [32] Sheng H, Zhu Y M, Li J, et al . Genetic transformation of DREB 2 A gene into alfalfa. Pratacultural Science, 2007, 24(3): 40-45. 盛慧, 朱延明, 李杰, 等. DREB 2 A 基因对紫花苜蓿遗传转化的研究. 草业科学, 2007, 24(3): 40-45. [33] Yang Z, Zhu Y M, Bai X, et al . Over-expressing GsCBRLK/SCMRP enhances alkaline tolerance and methionine content in transgenic Medicago sativa . Acta Agronomica Sinica, 2014, 40(3): 431. [34] Yue Y F, Wu G, Wu Y H, et al . Development of qualitative PCR method targeting marker genes in transgenic plants. Chinese Journal of Oil Crop Sciences, 2011, 33(3): 280-289. 岳运锋, 吴刚, 武玉花, 等. 转基因植物中标记基因定性PCR检测方法研究. 中国油料作物学报, 2011, 33(3): 280-289. [35] Wang M, Zhang Q, Liu F C, et al . Family-wide expression characterization of Arabidopsis beta-carbonic anhydrase genes using qRT-PCR and Promoter::GUS fusions. Biochimie, 2014, 97(1): 219-227. [36] Shang Z M, Gao H W, Wang X L, et al . Extraction of bean DNA and detection of transgenic CaMV35S by PCR method. Journal of Heze University, 2006, 28(2): 73-75. 尚智美, 高宏伟, 王学亮, 等. 大豆样品中DNA的提取与外源基因CaMV35S的PCR检测. 菏泽学院学报, 2006, 28(2): 73-75. [37] García-Pérez R D, Houdt H V, Depicker A. Spreading of post-transcriptional gene silencing along the target gene promotes systemic silencing. Plant Journal, 2004, 38(4): 594-602. [38] Wang H H, Wu S J, Li F F, et al . Transgene silencing caused by 35S promoter methylation in upland cotton ( Gossypium hirsutum ). Cotton Science, 2008, 20(4): 274-280. 王海海, 吴慎杰, 李飞飞, 等. 35S启动子甲基化引起棉花转基因沉默. 棉花学报, 2008, 20(4): 274-280. [39] Peng H Y, Li-Jie Y U. Integration pattern and character of exogenous genes in transgenic plants. Heilongjiang Agricultural Sciences, 2011, 95(2): 509-513. [40] Atsuo K, Yu H, Satoshi O, et al . Site-specific integration of exogenous genes using genome editing technologies in zebrafish. International Journal of Molecular Sciences, 2016, 17(5): 727. [41] Tang L, Cai H, Ji W, et al . Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa ( Medicago sativa L.). Plant Physiology & Biochemistry, 2013, 71(71C): 22-30. [42] Sun M, Sun X, Zhao Y, et al . Ectopic expression of GsPPCK3 and SCMRP in Medicago sativa enhances plant alkaline stress tolerance and methionine content. Plos One, 2013, 9(2): e89578. |