[1] Sun Q Z, Liu Q, Tao Y, et al . Research on the introduction of alfalfa into China during the Han Dynasty. Acta Prataculturae Sinica, 2016, 25(12): 194-205. 孙启忠, 柳茜, 陶雅, 等. 汉代苜蓿传入我国的时间考述. 草业学报, 2016, 25(12): 194-205. [2] Sun Q Z, Liu Q, Li F, et al . Alfalfa in ancient China: Botanical aspects. Acta Prataculturae Sinica, 2016, 25(5): 202-213. 孙启忠, 柳茜, 李峰, 等. 我国古代苜蓿的植物学研究考. 草业学报, 2016, 25(5): 202-213. [3] Song L P, Luo Z Z, Li L L, et al . Effect of lucerne-crop rotations on soil physical properties in the semiarid Loess Plateau of Central Gansu. Acta Prataculturae Sinica, 2015, 24(7): 12-20. 宋丽萍, 罗珠珠, 李玲玲, 等. 陇中黄土高原半干旱区苜蓿-作物轮作对土壤物理性质的影响. 草业学报, 2015, 24(7): 12-20. [4] Li S X, Wang Y R, Sun J H. Genetic diversity of seed yield characteristics in Chinese alfalfa ( Medicago sativa ) varieties. Acta Prataculturae Sinica, 2003, 12(1): 23-29. 李世雄, 王彦荣, 孙建华. 中国苜蓿品种种子产量性状的遗传多样性. 草业学报, 2003, 12(1): 23-29. [5] Gao Y, Ren Z B, Duan R P, et al . High yield cultivation technique of alfalfa drip irrigation. Xinjiang Farmland Reclamation Science & Technology, 2011, 34(3): 11. 高杨, 任志斌, 段瑞萍, 等. 苜蓿滴灌高产栽培技术. 新疆农垦科技, 2011, 34(3): 11. [6] Qiao X. Regulation of Arbuscular Mycorrhizal Fungi in Plant-Plant Interactions[D]. Beijing: China Agricultural University, 2016. 乔旭. 丛枝菌根真菌在植物种间互作中的调节机制[D]. 北京: 中国农业大学, 2016. [7] Li J S. Studying on between Hyphal Infection Characteristics of AMF and Phylogeny of Plant[D]. Lanzhou: Lanzhou University, 2016. 李军帅. 丛枝菌根真菌菌丝侵染特性与植物系统性关系的研究[D]. 兰州: 兰州大学, 2016. [8] Ruiz F M, Palencia P, Weiland C M, et al . Response of two strawberry cultivars to inoculation with arbuscular mycorrhizal fungus in different soils[C]//Symposium on Horticulture in Europe. 2012: 82. [9] Rhodes L H, Gerdemann J W. Hyphal translocation and uptake of sulfur by vesicular-arbuscular mycorrhizae of onion. Soil Biology & Biochemistry, 1978, 10(5): 355-360. [10] Chen Y Y. Growth and nutrient content of trifoliate orange seedlings influenced by arbuscular mycorrhizal fungi inoculation in low magnesium soil. Journal of Plant Nutrition, 2015, 38(10): 1516-1529. [11] Bowen G D, Skinner M F, Bevege D I. Zinc uptake by mycorrhizal and uninfected roots of Pinus radiata and Araucaria cunninghamii . Soil Biology & Biochemistry, 1974, 6(3): 141-144. [12] Zubek S, Rola K, Szewczyk A, et al . Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant and Soil, 2015, 390(1): 129-142. [13] Gai J, Gao W, Liu L, et al . Infectivity and community composition of arbuscular mycorrhizal fungi from different soil depths in intensively managed agricultural ecosystems. Journal of Soils and Sediments, 2015, 15(5): 1200-1211. [14] Voríšková A, Janoušková M, Slavíková R, et al . Effect of past agricultural use on the infectivity and composition of a community of arbuscular mycorrhizal fungi. Agriculture Ecosystems & Environment, 2016, 221: 28-39. [15] Estaún V, Savé R, Biel C. AM inoculation as a biological tool to improve plant revegetation of a disturbed soil with Rosmarinus officinalis under semi-arid conditions. Applied Soil Ecology, 1997, 6(3): 223-229. [16] Grandmaison J, Olah G M, Calsteren M R V, et al . Characterization and localization of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza, 1993, 3(4): 155-164. [17] Omirou M, Fasoula D A, Ioannides I M. Bradyrhizobium, inoculation alters indigenous AMF community assemblages and interacts positively with AMF inoculum to improve cowpea performance. Applied Soil Ecology, 2016, 108: 381-389. [18] Ishii A F C T. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biology Open, 2012, 1(1): 52-57. [19] Borowicz V A. Do arbuscular mycorrhizal fungi alter plant-pathogen relations. Ecology, 2001, 82(11): 3057-3068. [20] Maron J L, Connors P G. A native nitrogen-fixing shrub facilitates weed invasion. Oecologia, 1996, 105(3): 302-312. [21] Saito M, Marumoto T. Inoculation with arbuscular mycorrhizal fungi: the status quo in Japan and the future prospects. Plant and Soil, 2002, 244(1): 273-279. [22] Hobart J. Weighing method: US, US4010809[P]. 1977. [23] Reimar W I, Oberhans J. Measurement method: EP, EP 0246404 A2[P]. 1987. [24] Wu Q S, Yuan F Y, Fei Y J, et al . Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover. Acta Prataculturae Sinica, 2014, 23(1): 199-204. 吴强盛, 袁芳英, 费永俊, 等. 丛枝菌根真菌对白三叶根系构型和糖含量的影响. 草业学报, 2014, 23(1): 199-204. [25] Wang K, Zhao Z. Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in Southwest China. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, 2006, 91(1): 29-37. [26] Wilde P, Manal A, Stodden M, et al . Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environmental Microbiology, 2009, 11(6): 1548-1561. [27] Xu P B, Deng J M, Zhao C M. Study on grassland community characteristics and species diversity along altitudinal gradients in the Gahai wetland, Gansu province. Acta Prataculturae Sinica, 2012, 21(2): 219-226. 徐鹏彬, 邓建明, 赵长明. 甘肃尕海湿地不同海拔草地群落组分及物种多样性研究. 草业学报, 2012, 21(2): 219-226. [28] Wang Z H, Yang P L, Zhen X R, et al . Soil salinity changes of root zone and arable in cotton field with drip irrigation under mulch for different years. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(4): 90-99. 王振华, 杨培岭, 郑旭荣, 等. 膜下滴灌系统不同应用年限棉田根区盐分变化及适耕性. 农业工程学报, 2014, 30(4): 90-99. [29] Zhang W, Lv X, Li L H, et al . Salt transfer law for cotton field with drip irrigation under the plastic mulch in Xinjiang region. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(8): 15-19. 张伟, 吕新, 李鲁华, 等. 新疆棉田膜下滴灌盐分运移规律. 农业工程学报, 2008, 24(8): 15-19. [30] Yang P N, Dong X G, Liu L, et al . Soil salt movement and regulation of drip irrigation under plastic film in arid area. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 90-95. 杨鹏年, 董新光, 刘磊, 等. 干旱区大田膜下滴灌土壤盐分运移与调控. 农业工程学报, 2011, 27(12): 90-95. [31] Lu S, Guo H, Wang S M, et al . Effects of AM fungi on growth and physiological characters of Medicago sativa L. under NaCl stress. Journal of Soil and Water Conservation, 2011, 25(2): 227-231. 陆爽, 郭欢, 王绍明, 等. 盐胁迫下AM真菌对紫花苜蓿生长及生理特征的影响. 水土保持学报, 2011, 25(2): 227-231. [32] Gai J P, Liu R J. Effects of soil factors on arbuscular mycorrhizae (AM) fungi around roots of wild plants. Chinese Journal of Applied Ecology, 2003, 14(3): 470-472. 盖京苹, 刘润进. 土壤因子对野生植物AM真菌的影响. 应用生态学报, 2003, 14(3): 470-472. [33] Meng X X, Li M, Wang Y S, et al . Effect of arbuscular mycorrhizal fungi and phosphorus on the growth of Tooua sinesis (A.Juss) Roem. Journal of Laiyang Agricultural College, 2000, 17(3): 170-172. 孟祥霞, 李敏, 王幼珊, 等. 丛枝菌根真菌对香椿实生苗生长的影响. 莱阳农学院学报, 2000, 17(3): 170-172. [34] Wang C X, Qin L, Feng G. Soil salinity changes of root zone and arable in cotton field with drip irrigation under mulch for different years. Journal of Agricultural Environmental Science, 2003, 6(3): 301-303. 王昌宪, 秦岭, 冯固. 三种丛枝菌根真菌对黄瓜幼苗生长的影响. 农业环境科学学报, 2003, 6(3): 301-303. [35] Ma L M, Wang P T, Wang S G. Effect of flooding time length on mycorrhizal colonization of three AM fungi in two wetland plants. Environmental Science, 2014, 35(1): 263-270. 马雷猛, 王鹏腾, 王曙光. 淹水时长对3种丛枝菌根(AM)真菌侵染2种湿地植物的影响. 环境科学, 2014, 35(1): 263-270. [36] Watts-Williams S J, Cavagnaro T R. Using mycorrhiza-defective mutant genotypes of non-legume plant species to study the formation and functioning of arbuscular mycorrhiza: a review. Mycorrhiza, 2015, 25(8): 587-597. |