[1] Altpeter F. Perennial ryegrass ( Lolium perenne L.). Methods in Molecular Biology, 2006, 114: 75-105. [2] Ma B Y. Research advances in stress physiological adaptation of perennial ryegrass. Journal of Biology, 2010, 27(2): 58-61. 马博英. 多年生黑麦草的逆境生理研究进展. 生物学杂志, 2010, 27(2): 58-61. [3] Arnold A E, Maynard Z, Gilbert G S, et al . Are tropical fungal endophytes hyperdiverse. Ecology Letters, 2000, 3(4): 267-274. [4] Li X, Ren A, Han R, et al . Endophyte-mediated effects on the growth and physiology of Achnatherum sibiricum are conditional on both N and P availability. Plos One, 2012, 7(11): e48010. [5] Malinowski D P, Alloush G A, Belesky D P. Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum . Plant and Soil, 1998, 205(1): 1-12. [6] Malinowski D P, Brauer D K, Belesky D P. The endophyte Neotyphodium coenophialum affects root morhology of tall fescue grown under phosphorus deficiency. Journal of Agronomy & Crop Science, 1999, 183(1): 53-60. [7] Shi W Q, Xia Y S, Liu X L. The important role of arbuscular mycorrhizal in carbon sequestration in grassland ecosystems. Ecology & Environment, 2008, 17(2): 846-850. 石伟琦, 夏运生, 刘晓蕾. 丛枝菌根在草原生态系统碳固持中的重要作用. 生态环境学报, 2008, 17(2): 846-850. [8] Hecke M M V, Treonis A M, Kaufman J R. How does the fungal endophyte Neotyphodium coenophialum affect tall fescue ( Festuca arundinacea ) rhizodeposition and soil microorganisms. Plant and Soil, 2005, 275(1): 101-109. [9] Casas C, Omacini M, Montecchia M S. Soil microbial community responses to the fungal endophyte Neotyphodium in Italian ryegrass. Plant and Soil, 2011, 340(1): 347-355. [10] Iqbal J, Siegrist J A, Nelson J A, et al . Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands. Soil Biology & Biochemistry, 2012, 44(1): 347-355. [11] Li X L, George E, Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil, 1991, 136(1): 41-48. [12] Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 1994, 159(1): 89-102. [13] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 2001, 237(2): 173-195. [14] Balestrini R, Gomez-Ariza J L, Bonfante P. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Molecular Plant-Microbe Interactions, 2007, 20(9): 1055-1062. [15] Vestberg M, Tuomi J. A test of mutual aid in common mycorrhizal networks: established vegetation negates benefit in seedlings. Ecology, 2003, 84(4): 898-906. [16] Ai W D, Zhang J L, Li L, et al . Phosphorus transfer via mycorrhizal hyphal links from red clover to rye grass. Chinese Journal of Applied Ecology, 1999, 10(5): 615-618. 艾为党, 张俊伶, 李隆, 等. 三叶草体内磷通过菌丝桥向黑麦草的传递研究. 应用生态学报, 1999, 10(5): 615-618. [17] Smith S E, Smith F A, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 2003, 133(1): 16-20. [18] Smith S E, Read D J. Mycorrhizal Symbiosis. Longdon: Academic Press, 2008. [19] Hodge A, Helgason T, Fitter A H. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology, 2010, 3(4): 267-273. [20] Van der Heijden M G A, Klironomos J N, Ursic M, et al . Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69. [21] Mack K M L, Rudgers J A. Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos, 2008, 117(2): 310-320. [22] Binet M N, Sage L, Malan C, et al . Effects of mowing on fungal endophytes and arbuscular mycorrhizal fungi in subalpine grasslands. Fungal Ecology, 2013, 6(4): 248-255. [23] Larimer A L, Bever J D, Clay K. The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis, 2010, 51(2): 139-148. [24] Zhou Y, Li X, Qin J, et al . Effects of simultaneous infections of endophytic fungi and arbuscular mycorrhizal fungi on the growth of their shared host grass Achnatherum sibiricum under varying N and P supply. Fungal Ecology, 2016, 20: 56-65. [25] García-Parisi P A, Omacini M. Arbuscular mycorrhizal fungi can shift plant-soil feedback of grass-endophyte symbiosis from negative to positive. Plant and Soil, 2017, doi:10.1007/s11104-017-3216-y. [26] Koske R E, Gemma J N. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research, 1989, 92(4): 486-488. [27] Pittman J J, Zhang H, Schroder J L, et al . Differences of phosphorus in mehlich 3 extracts determined by colorimetric and spectroscopic methods. Communications in Soil Science and Plant Analysis, 2005, 36(11/12): 1641-1659. [28] Sadasivam S, Manickam A. Biochemical Methods. India: New Age International Publishers, 1996. [29] Song Y C, Li X L, Feng G. Effect of phosphatase activity on soil organic phosphorus loss in the environment of clover growth. Acta Ecologica Sinica, 2001, 21(7): 1130-1135. 宋勇春, 李晓林, 冯固. 菌根真菌磷酸酶活性对红三叶草生境中土壤有机磷亏缺的影响. 生态学报, 2001, 21(7): 1130-1135. [30] Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. The American Naturalist, 2002, 160(S4): S99-S127. [31] Ren A Z, Gao Y B. Growth characteristics of endophyte-infected and endophyte-free Lolium perenne L. seedlings under osmotic stress conditions. Acta Ecologica Sinica, 2003, 23(11): 2307-2317. 任安芝, 高玉葆. 渗透胁迫下内生真菌感染对黑麦草幼苗生长的影响. 生态学报, 2003, 23(11): 2307-2317. [32] Rahman M H, Saiga S. Endophytic fungi ( Neotyphodium coenophialum ) affect the growth and mineral uptake, transport and efficiency ratios in tall fescue ( Festuca arundinacea ). Plant and Soil, 2005, 272(1): 163-171. [33] Malinowski D P, Alloush G A, Belesky D P. Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant and Soil, 2000, 227(1/2): 115-126. [34] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754-13759. [35] Malinowski D P, Belesky D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science, 2000, 40(4): 923-940. [36] Feng H Y, Feng G, Wang J G, et al . Regulation of P status in host plant on alkaline phosphatase (ALP) activity in intraradical hyphae and development of extraradical hythae of AM fungi. Mycosystema, 2003, 22(4): 589-598. 冯海艳, 冯固, 王敬国, 等. 植物磷营养状况对丛枝菌根真菌生长及代谢活性的调控. 菌物学报, 2003, 22(4): 589-598. [37] Fang A G. Effects of Neotyphodium Endophyte and AM Fungi on Growth of Hordeum Brevisubulatum Under Salt and Phosphorus Stress Conditions. Lanzhou: Lanzhou University, 2013. 方爱国. 盐与磷胁迫条件下内生真菌和菌根菌对野大麦生长的影响. 兰州: 兰州大学, 2013. [38] Ye S P, Zeng X H, Xin G R, et al . Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels. Acta Prataculturae Sinica, 2013, 22(1): 46-52. 叶少萍, 曾秀华, 辛国荣, 等. 不同磷水平下丛枝菌根真菌(AMF)对狗牙根生长与再生的影响. 草业学报, 2013, 22(1): 46-52. [39] Ezawa T, Saito M, Yoshida T. Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp. Plant and Soil, 1995, 176(1): 57-63. [40] Chang C N, Chou L C. Growth responses, enzyme activities, and component changes as influenced by Rhizoctonia orchid mycorrhiza on Anoectochilus formosanus Hayata. Botanical Studies, 2007, 48(4): 445-451. [41] Geneva M, Zehirov G, Djonova E, et al . The effect of inoculation of pea plants with mycorrhizal fungi and Rhizobium on nitrogen and phosphorus assimilation. Plant Soil & Environment, 2006, 52(10): 435-440. [42] Amaya-Carpio L, Davies F T, Fox T, et al . Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. fistulosa . Photosynthetica, 2009, 47(1): 1-10. [43] Ratti N, Verma H N, Gautam S P. Effect of Glomus species on physiology and biochemistry of Catharanthus roseus . Indian Journal of Microbiology, 2010, 50(3): 355-360. [44] Doley K, Jite P K. Response of groundnut (‘JL-24’) cultivar to mycorrhiza inoculation and phosphorous application. Notulae Scientia Biologicae, 2012, 4(3): 118-125. [45] Fortin J A, Bécard G, Declerck S, et al . Arbuscular mycorrhiza on root-organ cultures. Canadian Journal of Botany, 2002, 80(1): 1-20. [46] Ouzounidou G, Skiada V, Papadopoulou K K, et al . Effects of soil pH and arbuscular mycorrhiza (AM) inoculation on growth and chemical composition of chia ( Salvia hispanica L.) leaves. Brazilian Journal of Botany, 2015, 38(3): 487-495. [47] Joner E J, Johansen A. Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycological Research, 2000, 104(1): 81-86. [48] Chuchou M, Guo B, An Z Q, et al . Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biology & Biochemistry, 1992, 24(7): 633-637. [49] Müller J. Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne . Functional Plant Biology, 2003, 30(4): 419-424. [50] Omacini M, Eggers T, Bonkowski M, et al . Leaf endophytes affect mycorrhizal status and growth of co-infected and neighbouring plants. Functional Ecology, 2006, 20(2): 226-232. [51] Novas M V, Cabral D, Godeas A M. Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis, 2005, 40(1): 23-30. [52] Larimer A L, Bever J D, Clay K. Consequences of simultaneous interactions of fungal endophytes and arbuscular mycorrhizal fungi with a shared host grass. Oikos, 2012, 121(12): 2090-2096. [53] Vignale M V, Iannone L J, Pinget A D, et al . Effect of epichloid endophytes and soil fertilization on arbuscular mycorrhizal colonization of a wild grass. Plant and Soil, 2016, 405(1/2): 279-287. [54] Brundrett M C. Tansley review No. 134: Coevolution of roots and mycorrhizas of land plants. New Phytologist, 2002, 154(2): 275-304. [55] Thrower L B, Lewis D H. Uptake of sugars by Epichloe typhina (Pers. Ex Fr.) Tul. in culture and from its host, Agrostis stolonifera L. New Phytologist, 1973, 72(3): 501-508. [56] Blanke V, Renker C, Wagner M, et al . Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytologist, 2005, 166(3): 981-992. |