1 |
Fornara D A, Tilman D. Ecological mechanisms associated with the positive diversity-productivity relationship in an N-limited grassland. Ecology, 2009, 90(2): 408-418.
|
2 |
Sah S P, Rita H, Ilvesniemi H. 15N natural abundance of foliage and soil across boreal forests of Finland. Biogeochemistry, 2006, 80(3): 277-288.
|
3 |
Templer P H, Arthur M A, Lovett G M, et al. Plant and soil natural abundance δ15N: Indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia, 2007, 153(2): 399-406.
|
4 |
Sun W, Lin G H, Chen S P, et al. Applications of stable isotope techniques and keeling plot approach to carbon and water exchange studies of terrestrial ecosystems. Chinese Journal of Plant Ecology, 2005, 29(5): 851-862.
|
|
孙伟, 林光辉, 陈世苹, 等. 稳定性同位素技术与Keeling曲线法在陆地生态系统碳/水交换研究中的应用. 植物生态学报, 2005, 29(5): 851-862.
|
5 |
Yu P J, Xu H L, Wang W, et al. Response of soil 15 N isotope to water changes in desert grassland. Journal of Soil and Water Conservation, 2011, 25(2): 241-244.
|
|
禹朴家, 徐海量, 王炜, 等. 荒漠草地土壤δ15N同位素对水分变化的响应. 水土保持学报, 2011, 25(2): 241-244.
|
6 |
Belnap R D E. Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology, 1999, 80(1): 150-160.
|
7 |
Amundson R, Austin A T, Schuur E A G, et al. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles, 2003, 17(1): 1031-1041.
|
8 |
Swap R J, Aranibar J N, Dowty P R, et al. Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: Patterns and implications. Global Change Biology, 2004, 10(3): 350-358.
|
9 |
Wang X F, Ma H B, Shen Y, et al. Effects of different rotational grazing patterns on plant community characteristics in desert grassland. Acta Prataculturae Sinica, 2019, 28(4): 25-35.
|
|
王晓芳, 马红彬, 沈艳, 等. 不同轮牧方式对荒漠草原植物群落特征的影响. 草业学报, 2019, 28(4): 25-35.
|
10 |
Wang M J, Zhang C H. Climate change in Inner Mongolia grassland and the effects on pastural animal husbandry. Grassland and Prataculture, 2013, 25(1): 5-12.
|
|
王明玖, 张存厚. 内蒙古草地气候变化及对畜牧业的影响分析. 草原与草业, 2013, 25(1): 5-12.
|
11 |
Chang J J, Xu L, Xue J Y, et al. Effects of grazing intensity on soil organic matter and microorganisms in the Zoige alpine meadow. Acta Prataculturae Sinica, 2018, 150(1): 25-34.
|
|
常晶晶, 徐丽, 薛晶月, 等. 放牧强度对若尔盖高寒草甸土壤有机质和微生物的影响. 草业学报, 2018, 150(1): 25-34.
|
12 |
Yao H Y, Li X Y, Guo N, et al. Effects of long-term grazing on carbon isotope composition in plants and soils of different grassland. Chinese Journal of Applied Ecology, 2019, 30(2): 553-562.
|
|
姚鸿云, 李小雁, 郭娜, 等. 多年放牧对不同类型草原植被及土壤碳同位素的影响. 应用生态学报, 2019, 30(2): 553-562.
|
13 |
Ma W H, Yang Y H, He J S, et al. Ground biomass of temperate grasses in Inner Mongolia and its relationship with environmental factors. Science China Life Sciences, 2008, 38(1): 84-92.
|
|
马文红, 杨元合, 贺金生, 等. 内蒙古温带草地生物量及其与环境因子的关系. 中国科学: 生命科学, 2008, 38(1): 84-92.
|
14 |
Chen X Q, Zheng T. Spatial patterns of aboveground biomass and its climatic attributions in typical steppe of Inner Mongolia. Scientia Geographica Sinica, 2008(3): 369-374.
|
|
陈效逑, 郑婷. 内蒙古典型草原地上生物量的空间格局及其气候成因分析. 地理科学, 2008(3): 369-374.
|
15 |
Shiyomi M, Okada M, Takahashi S, et al. Spatial pattern changes in aboveground plant biomass in a grazing pasture. Ecological Research, 2002, 13(3): 313-322.
|
16 |
Wilsey B J, Parent G, Roulet N T, et al. Tropical pasture carbon cycling: Relationships between C source/sink strength, above-ground biomass and grazing. Ecology Letters, 2010, 5(3): 367-376.
|
17 |
Liu X Z, Wang G A, Li J Z, et al. Nitrogen isotope composition characteristics of modern plants and their variations along an altitudinal gradient in Dongling Mountain in Beijing. Science China Earth Sciences, 2009(10): 1347-1359.
|
|
刘贤赵, 王国安, 李嘉竹, 等. 北京东灵山地区现代植物氮同位素组成及其对海拔梯度的响应. 中国科学: 地球科学, 2009(10): 1347-1359.
|
18 |
Klumpp K, Sébastien F, Eléonore A, et al. Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. Journal of Ecology, 2009, 97(5): 876-885.
|
19 |
Kitayama K, Iwamoto K. Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant and Soil, 2001, 229(2): 203-212.
|
20 |
Bowman M W D. Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: Do species partition by nitrogen form? Oecologia, 2002, 130(4): 609-616.
|
21 |
Kahmen A, Wanek W, Buchmann N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia, 2008, 156(4): 861-870.
|
22 |
Pardo L H, Hemond H F, Montoya J P, et al. Response of the natural abundance of 15N in forest soils and foliage to high nitrate loss following clear-cutting. Canadian Journal of Forest Research, 2011, 32(7): 1126-1136.
|
23 |
Quan X L, Duan Z H, Qiao Y M, et al. Variations in soil carbon and nitrogen stable isotopes and density among different alpine meadows. Acta Prataculturae Sinica, 2016, 25(12): 27-34.
|
|
全小龙, 段中华, 乔有明, 等. 不同高寒草甸土壤碳氮稳定同位素和密度的差异. 草业学报, 2016, 25(12): 27-34.
|