草业学报 ›› 2024, Vol. 33 ›› Issue (9): 15-27.DOI: 10.11686/cyxb2023402
收稿日期:
2023-10-24
修回日期:
2023-12-06
出版日期:
2024-09-20
发布日期:
2024-06-20
通讯作者:
吴静
作者简介:
E-mail: wujing@gsau.edu.cn基金资助:
Zi-ao SHEN(), Jing WU(), Chun-bin LI
Received:
2023-10-24
Revised:
2023-12-06
Online:
2024-09-20
Published:
2024-06-20
Contact:
Jing WU
摘要:
在生态恢复过程中,生态系统中植被所处状态对于生态平衡是否可持续至关重要,本研究以河西内陆河流域2000-2020年生长季气象和植被数据为基础,应用Eagleson生态水文最优性理论,模拟流域内生态水文平衡状态下的最优植被覆盖度Meq,植被覆盖度恢复阈值与当前现状植被覆盖度的差值即为植被恢复潜力。结果表明:1)模拟的多年平均最优植被覆盖度Meq与多年生长季平均实际植被覆盖度M的变化一致,但过渡更加平稳,呈现从东南向西北递减的趋势,流域内多年生长季平均实际植被覆盖度为0.163,模拟的多年平均最优植被覆盖度为0.166。2)流域内平均恢复潜力为0.003,植被覆盖度仍具有恢复潜力的面积占比为62.76%,分布在流域北部地区,3个流域内平均植被恢复潜力为石羊河流域>黑河流域>疏勒河流域。3)河西内陆河流域植被恢复潜力与区域干旱指数密切相关。森林的平均植被恢复潜力随着干旱等级增加呈减小的变化特征;而灌木植被覆盖度超过恢复潜力的程度随干旱指数增加呈先加剧后减轻的变化特征。
申子傲, 吴静, 李纯斌. 基于生态水文最优性理论的河西内陆河流域植被覆盖模拟[J]. 草业学报, 2024, 33(9): 15-27.
Zi-ao SHEN, Jing WU, Chun-bin LI. Simulation of vegetation cover in the inland river basin of Hexi based on the theory of ecohydrological optimality[J]. Acta Prataculturae Sinica, 2024, 33(9): 15-27.
图1 研究区概况该图基于自然资源部标准地图服务网站GS(2019)1822号标准地图制作,底图边界无修改。The map was based on the standard map service website of the Ministry of Nature Resources with the drawing review No. GS(2019)1822, and the base map borders were not modified.
Fig.1 Overview of the research region
类别Type | 名称Name | 含义Meaning | 来源Source |
---|---|---|---|
气象数据 Meteorological data | 平均降水深度Mean precipitation depth | 气象站点数据插值Meteorological station data interpolation | |
平均降水间隔时间Mean precipitation interval | |||
平均降水持续时间Mean precipitation duration | |||
平均降水次数Mean frequency of precipitation | |||
地表湿度计常数Surface psychrometric constant | 宋妮等[ | ||
植被数据 Vegetation data | 生长季平均实际植被覆盖度Average actual vegetation coverage during the growing season | 基于Modis数据计算Calculation based on Modis data | |
叶倾角的余弦值Cosine of leaf angle | 张树磊[ | ||
树干分数Stem fraction | |||
叶片和空气的阻抗比Impedance ratio of blade to air | |||
叶面积指数Foliage area index |
表1 模型参数说明及来源
Table 1 Description and source of model parameters
类别Type | 名称Name | 含义Meaning | 来源Source |
---|---|---|---|
气象数据 Meteorological data | 平均降水深度Mean precipitation depth | 气象站点数据插值Meteorological station data interpolation | |
平均降水间隔时间Mean precipitation interval | |||
平均降水持续时间Mean precipitation duration | |||
平均降水次数Mean frequency of precipitation | |||
地表湿度计常数Surface psychrometric constant | 宋妮等[ | ||
植被数据 Vegetation data | 生长季平均实际植被覆盖度Average actual vegetation coverage during the growing season | 基于Modis数据计算Calculation based on Modis data | |
叶倾角的余弦值Cosine of leaf angle | 张树磊[ | ||
树干分数Stem fraction | |||
叶片和空气的阻抗比Impedance ratio of blade to air | |||
叶面积指数Foliage area index |
植被类型 Vegetation type | M=0 | M=1 | |||
---|---|---|---|---|---|
hs/h | rc/ra | β | rc/ra | ||
阔叶林Broad-leaved forest | 0.5 | 0.6 | 0.3 | 4.7 | 0.4 |
草地Grassland | 0.0 | 3.0 | 0.6 | 4.1 | 1.2 |
农田Cultivated land | 0.1 | 2.1 | 0.5 | 3.6 | 0.9 |
灌木Shrub | 0.2 | 1.5 | 0.4 | 3.6 | 0.5 |
针叶林Needle-leaved forest | 0.7 | 0.3 | 0.5 | 2.5 | 1.8 |
表2 不同植被类型的冠层参数
Table 2 Canopy parameters of different vegetation types
植被类型 Vegetation type | M=0 | M=1 | |||
---|---|---|---|---|---|
hs/h | rc/ra | β | rc/ra | ||
阔叶林Broad-leaved forest | 0.5 | 0.6 | 0.3 | 4.7 | 0.4 |
草地Grassland | 0.0 | 3.0 | 0.6 | 4.1 | 1.2 |
农田Cultivated land | 0.1 | 2.1 | 0.5 | 3.6 | 0.9 |
灌木Shrub | 0.2 | 1.5 | 0.4 | 3.6 | 0.5 |
针叶林Needle-leaved forest | 0.7 | 0.3 | 0.5 | 2.5 | 1.8 |
图2 植被盖度趋势及空间分布特征该图基于自然资源部标准地图服务网站GS(2019)1822号标准地图制作,底图边界无修改。The map was based on the standard map service website of the Ministry of Nature Resources with the drawing review No. GS(2019)1822, and the base map borders were not modified.
Fig.2 Trends and spatial distribution of vegetation coverage
图3 生长季平均降水特征空间分布该图基于自然资源部标准地图服务网站GS(2019)1822号标准地图制作,底图边界无修改。The map was based on the standard map service website of the Ministry of Nature Resources with the drawing review No. GS(2019)1822, and the base map borders were not modified.
Fig.3 Spatial distribution of average precipitation characteristics during the growing season
图4 生长季平均潜在蒸散发速率和气温空间分布该图基于自然资源部标准地图服务网站GS(2019)1822号标准地图制作,底图边界无修改。The map was based on the standard map service website of the Ministry of Nature Resources with the drawing review No. GS(2019)1822, and the base map borders were not modified.
Fig.4 Spatial distribution of mean potential evapotranspiration rate and air temperature during the growing season
图5 多年平均实际植被覆盖度(M)与模拟多年平均最优植被覆盖度(Meq)回归分析及相关性显著检验该图基于自然资源部标准地图服务网站GS(2019)1822号标准地图制作,底图边界无修改。The map was based on the standard map service website of the Ministry of Nature Resources with the drawing review No. GS(2019)1822, and the base map borders were not modified.
Fig.5 Regression analysis and significance test of correlation between multi-year growing season average actual vegetation coverage (M) and simulated average multi-year optimal vegetation coverage (Meq)
图6 实际和模拟最优植被盖度、植被恢复潜力及研究区内土地覆盖类型该图基于自然资源部标准地图服务网站GS(2019)1822号标准地图制作,底图边界无修改。The map was based on the standard map service website of the Ministry of Nature Resources with the drawing review No. GS(2019)1822, and the base map borders were not modified.
Fig.6 Actual and simulated optimal vegetation coverage, vegetation recovery potential, and land cover types in the study area
干旱等级 Drought degree | 平均植被覆盖度Average vegetation coverage | 模拟平均植被覆盖度Simulated average vegetation coverage | 平均植被恢复潜力Average vegetation restoration potential |
---|---|---|---|
第1级Level 1 | 0.451 | 0.395 | -0.056 |
第2级Level 2 | 0.373 | 0.229 | -0.144 |
第3级Level 3 | 0.136 | 0.142 | 0.006 |
第4级Level 4 | 0.107 | 0.095 | -0.012 |
第5级Level 5 | 0.078 | 0.059 | -0.019 |
表3 不同干旱等级的植被覆盖情况
Table 3 Vegetation cover in different drought degree
干旱等级 Drought degree | 平均植被覆盖度Average vegetation coverage | 模拟平均植被覆盖度Simulated average vegetation coverage | 平均植被恢复潜力Average vegetation restoration potential |
---|---|---|---|
第1级Level 1 | 0.451 | 0.395 | -0.056 |
第2级Level 2 | 0.373 | 0.229 | -0.144 |
第3级Level 3 | 0.136 | 0.142 | 0.006 |
第4级Level 4 | 0.107 | 0.095 | -0.012 |
第5级Level 5 | 0.078 | 0.059 | -0.019 |
1 | Gu F Y, Xu G C, Wang B, et al. Vegetation cover change and restoration potential in the Ziwuling Forest Region, China. Ecological Engineering, 2023, 187: 106877. |
2 | Jin F, Ge W Y, Qin W, et al. Spatiotemporal variation of vegetation and its future development potential in Gansu province. Science of Soil and Water Conservation, 2023, 21(1): 110-118. |
靳峰, 戈文艳, 秦伟, 等. 甘肃省植被时空变化及其未来发展潜力. 中国水土保持科学, 2023, 21(1): 110-118. | |
3 | Shao R, Zhang B Q, Su T X, et al. Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 11783-11802. |
4 | Zhang B Q, Shao R, Zhao X N, et al. Effects of large-scale vegetation restoration on eco-hydrological processes over the Loess Plateau, China. Journal of Basic Science and Engineering, 2020, 28(3): 594-606. |
张宝庆, 邵蕊, 赵西宁, 等. 大规模植被恢复对黄土高原生态水文过程的影响. 应用基础与工程科学学报, 2020, 28(3): 594-606. | |
5 | Zhang K, Lv Y H, Fu B J, et al. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau. Acta Geographica Sinica, 2020, 75(5): 949-960. |
张琨, 吕一河, 傅伯杰, 等. 黄土高原植被覆盖变化对生态系统服务影响及其阈值. 地理学报, 2020, 75(5): 949-960. | |
6 | Ye X, Kang S Z, Zhao Y H, et al. Spatio-temporal relationship between vegetation restoration and ecosystem services in the Loess Plateau of Northern Shaanxi, China. Chinese Journal of Applied Ecology, 2022, 33(10): 2760-2768. |
叶璇, 康帅直, 赵永华, 等. 陕北黄土高原植被恢复与生态系统服务的时空关系. 应用生态学报, 2022, 33(10): 2760-2768. | |
7 | Gao H D, Pang G W, Li Z B, et al. Evaluating the potential of vegetation restoration in the Loess Plateau. Acta Geographica Sinica, 2017, 72(5): 863-874. |
高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究. 地理学报, 2017, 72(5): 863-874. | |
8 | Zhang J T. Carrying capacity for vegetation across typical sandy regions in northern China. Beijing: Beijing Forestry University, 2018. |
张举涛. 中国北方典型沙区植被承载力研究. 北京: 北京林业大学, 2018. | |
9 | Li T, Lv Y H, Ren Y J, et al. Gauging the effectiveness of vegetation restoration and the influence factors in the Loess Plateau. Acta Ecologica Sinica, 2020, 40(23): 8593-8605. |
李婷, 吕一河, 任艳姣, 等. 黄土高原植被恢复成效及影响因素. 生态学报, 2020, 40(23): 8593-8605. | |
10 | Wang N, Bi H X, Guo M X, et al. Study on soil water vegetation carrying capacity of Robinia pseudoacacia plantation in the Loess gully area of Western Shanxi Province. Journal of Soil and Water Conservation, 2019, 33(6): 213-219. |
王宁, 毕华兴, 郭孟霞, 等. 晋西黄土残塬沟壑区刺槐人工林土壤水分植被承载力研究. 水土保持学报, 2019, 33(6): 213-219. | |
11 | Zhang D H, Li X R, Zhang P. Significance of eco-hydrological threshold in artificial vegetation ecosystem management in China desert area. Journal of Desert Research, 2017, 37(4): 678-688. |
张定海, 李新荣, 张鹏. 生态水文阈值在中国沙区人工植被生态系统管理中的意义. 中国沙漠, 2017, 37(4): 678-688. | |
12 | Lv Z T, Li S Y, Fan J L, et al. Natural restoration potential of vegetation in Mongolia. Journal of Desert Research, 2021, 41(5): 192-201. |
吕振涛, 李生宇, 范敬龙, 等. 蒙古国植被自然恢复潜力. 中国沙漠, 2021, 41(5): 192-201. | |
13 | Yi H J, Zhang X P, He L, et al. Vegetation restoration potential and land use change in different geomorphological areas of the Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(18): 255-263. |
易海杰, 张晓萍, 何亮, 等. 黄土高原不同地貌类型区植被恢复潜力及其土地利用变化. 农业工程学报, 2022, 38(18): 255-263. | |
14 | Xu X, Zhang D J, Zhang Y, et al. Evaluating the vegetation restoration potential achievement of ecological projects: A case study of Yan’an, China. Land Use Policy, 2020, 90: 104293. |
15 | Shao W W, Yang D W, Sun F B, et al. Analyzing the regional soil-vegetation-atmosphere interaction using both the Eagleson and Budyko’s water balance models. Procedia Environmental Sciences, 2011, 10: 1908-1913. |
16 | Mo K L, Cong Z T, Lei H M. Optimal vegetation cover in the Horqin Sands, China. Ecohydrology, 2016, 9(4): 700-711. |
17 | Cong Z T, Li Q S, Mo K L, et al. Ecohydrological optimality in Northeast China Transect. Hydrology and Earth System Sciences, 2017, 21(5): 2449-2462. |
18 | Fan D Z, Mei X M, Li P, et al. Simulation of vegetation carrying capacity in Ningxia under eco-hydrological balance. Journal of Soil and Water Conservation, 2023, 37(4): 166-172. |
范德政, 梅雪梅, 李鹏, 等. 生态水文平衡状态下宁夏地区植被承载力模拟. 水土保持学报, 2023, 37(4): 166-172. | |
19 | Zhang S L, Yang D W, Yang Y T, et al. Excessive afforestation and soil drying on China’s Loess Plateau. Journal of Geophysical Research: Biogeosciences, 2018, 123(3): 923-935. |
20 | Su T X, Zhang B Q, He X G, et al. Rational planning of land use can maintain water yield without damaging ecological stability in upstream of inland river: Case study in the Hei River basin of China. Journal of Geophysical Research: Atmospheres, 2020, 125(18): 32727. |
21 | Zhang Y X, Zhao T N, Shi C Q, et al. Simulation of vegetation cover based on the theory of ecohydrological optimality in the yongding river watershed, China. Forests, 2021, 12(10): 1377. |
22 | Mo K L. Study on water-controlled ecohydrological processes. Beijing: Tsinghua University, 2017. |
莫康乐. 水分控制下的生态水文过程研究. 北京: 清华大学, 2017. | |
23 | Zhang S L. Explore the interactions between vegetation and hydrology under a changing environment in Chinese typical basins. Beijing: Tsinghua University, 2018. |
张树磊. 中国典型流域植被水文相互作用机理及变化规律研究. 北京: 清华大学, 2018. | |
24 | Zhao X Y. Research on eco-hydrological process and model simulation of Xilin river basin. Hohhot: Inner Mongolia Agricultural University, 2022. |
赵心毓. 锡林河流域生态水文过程及模型模拟研究. 呼和浩特: 内蒙古农业大学, 2022. | |
25 | Eagleson P S. Ecohydrology: Darwinian expression of vegetation form and function. Cambridge: Cambridge University Press, 2002. |
26 | Shao W W. Study on the interaction between vegetation and hydrological cycle in the non-humid regions of China. Beijing: Tsinghua University, 2011. |
邵薇薇. 中国非湿润地区植被与流域水循环相互作用机理研究. 北京: 清华大学, 2011. | |
27 | Zhang L F, Yan H W, Yang S W, et al. Variations of vegetation coverage and its response to terrain in Heihe river basin. Remote Sensing Information, 2018, 33(2): 46-52. |
张立峰, 闫浩文, 杨树文, 等.黑河流域植被覆盖变化及其对地形的响应. 遥感信息, 2018, 33(2): 46-52. | |
28 | Zhang L F. On vegetation cover change and its influencing factors in typical inland river basins of northwest ecological environment fragile regions. Lanzhou: Lanzhou Jiaotong University, 2019. |
张立峰. 西北生态环境脆弱区典型内陆河流域植被覆盖变化及其影响因素研究. 兰州: 兰州交通大学, 2019. | |
29 | Li Y. Analysis of drought characteristics based on multiple indices in the Hexi inland river basin. Beijing: China University of Geosciences, 2020. |
李莹. 河西内陆河流域多指数干旱特征分析. 北京: 中国地质大学, 2020. | |
30 | Wang S X, Wang F. Response of oasis area to the surface runoff in Hexi inland river basin of China. Journal of Desert Research, 2021, 41(2): 231-241. |
王生霞, 王飞. 河西内陆河流域绿洲面积对地表径流的响应. 中国沙漠, 2021, 41(2): 231-241. | |
31 | Zhang D. Drought assessments of inland river basin in Hexi Corridor based on SPEI index. Beijing: China University of Geosciences, 2020. |
张丹. 基于SPEI指数的河西内陆河流域干旱评估. 北京: 中国地质大学, 2020. | |
32 | Wang Y H. Characteristics and hydrological response of extreme precipitation and temperature in Hexi inland river basin. Beijing: China University of Geosciences, 2017. |
王月华. 河西内陆河流域极端降水和气温变化特征及其水文响应. 北京: 中国地质大学, 2017. | |
33 | Maidment D R. Handbook of hydrology. New York: McGraw-Hill, 1993. |
34 | Song N, Sun J S, Wang J L, et al. Analysis of difference in crop coefficients based on modified Penman and Penman-Monteith equations. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 88-97. |
宋妮, 孙景生, 王景雷, 等. 基于Penman修正式和Penman-Monteith公式的作物系数差异分析. 农业工程学报, 2013, 29(19): 88-97. | |
35 | Li Q S. Ecohydrological optimality in Northeast China Transect. Beijing: Tsinghua University, 2016. |
李沁书. 中国东北样带生态水文最优性研究. 北京: 清华大学, 2016. | |
36 | Su T X. Research on the impact of vegetation dynamics on streamflow and ecology in the upper Heihe river basin. Lanzhou: Lanzhou University, 2021. |
苏同宣. 黑河上游植被动态对径流变化和生态的影响研究. 兰州: 兰州大学, 2021. | |
37 | Wang K L, Wang Z H, Xiao P Q, et al. Evaluation of restoration potential of shrubs-herbs-arbor vegetation coverage on the Loess Plateau based on the principle of water balance. Acta Ecologica Sinica, 2022, 42(20): 8352-8364. |
王凯利, 王志慧, 肖培青, 等. 基于水量平衡原理的黄土高原林草植被覆盖度恢复潜力评估. 生态学报, 2022, 42(20): 8352-8364. | |
38 | Chen S J, Xu G C, Lv Z P, et al. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China. Arid Land Geography, 2023, 46(5): 742-752. |
陈淑君, 许国昌, 吕志平, 等. 中国植被覆盖度时空演变及其对气候变化和城市化的响应. 干旱区地理, 2023, 46(5): 742-752. | |
39 | Abudureheman W, Yusufujiang R, Zhang F, et al. Temporal and spatial characteristics of grassland degradation in Xinjiang section of Tianshan Mountains based on remote sensing monitoring and its relationship with climate factors. Pratacultural Science, 2023, 40(7): 1779-1792. |
阿卜杜热合曼·吾斯曼, 玉素甫江·如素力, 张发, 等. 基于遥感监测的天山新疆段草地退化时空特征及其与气候因子的关系. 草业科学, 2023, 40(7): 1779-1792. | |
40 | Yang H J. Assessment and adaptive management of ecosystem services in Qilian Mountain National Nature Reserve. Lanzhou: Lanzhou University, 2023. |
杨海江. 祁连山国家级自然保护区生态系统服务评估与适应性管理. 兰州: 兰州大学, 2023. | |
41 | Ding Y K, Ye T, Chen K. Analysis of spatio-temporal dynamics and driving forces of vegetation cover in the Hutuo river basin based on the geographic detector. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1737-1749. |
丁永康, 叶婷, 陈康. 基于地理探测器的滹沱河流域植被覆盖时空变化与驱动力分析. 中国生态农业学报, 2022, 30(11): 1737-1749. | |
42 | Zhu X, He H S, Zhang S, et al. Interactive effects of climatic factors on seasonal vegetation dynamics in the central Loess Plateau, China. Forests, 2019, 10(12): 1071. |
43 | Wang P, Wang Y H, Han X L, et al. Dynamic changes of vegetation coverage in Heihe river basin from 1990 to 2019 and the effect of temperature on it. Geological Survey of China, 2021, 8(3): 64-71. |
王鹏, 王雁鹤, 韩小龙, 等. 1990-2019年黑河流域植被覆盖度动态变化及气温对其影响. 中国地质调查, 2021, 8(3): 64-71. | |
44 | Zhang F G. Multi-perspective assessment of human activity impacts on the Qilian Mountains ecosystem during 2000-2020. Lanzhou: Lanzhou University, 2023. |
张富广. 2000-2020年人类活动对祁连山生态影响的多维评估. 兰州: 兰州大学, 2023. |
[1] | 张慧龙, 杨秀春, 杨东, 陈昂, 张敏. 2000-2020年内蒙古草地植被覆盖度时空变化及趋势预测[J]. 草业学报, 2023, 32(8): 1-13. |
[2] | 张永, 杨自辉, 郭树江, 王强强, 詹科杰, 张剑挥, 魏怀东. 基于遥感分析20年来民勤绿洲防护林带植被变化研究[J]. 草业学报, 2018, 27(7): 14-24. |
[3] | 张永, 杨自辉, 王立, 魏怀东, 惠晓雅, 张剑挥, 王强强, 郭树江, 詹科杰. 基于遥感分析13年来石羊河上游山区植被变化研究[J]. 草业学报, 2017, 26(11): 12-21. |
[4] | 元志辉, 包刚, 银山, 雷军, 包玉海, 萨楚拉. 2000-2014年浑善达克沙地植被覆盖变化研究[J]. 草业学报, 2016, 25(1): 33-46. |
[5] | 马琳雅,崔霞,冯琦胜,梁天刚. 2001-2011年甘南草地植被覆盖度动态变化分析[J]. 草业学报, 2014, 23(4): 1-9. |
[6] | 王浩,李文龙,杜国祯,朱晓丽. 基于3S技术的甘南草地覆盖度动态变化研究[J]. 草业学报, 2012, 21(3): 26-37. |
[7] | 韩方虎,沈禹颖,王希,周少平,杨晶,耿丽英. 苜蓿草地土壤氮矿化的研究[J]. 草业学报, 2009, 18(2): 11-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||