草业学报 ›› 2025, Vol. 34 ›› Issue (11): 40-52.DOI: 10.11686/cyxb2024514
张胜辉1,2(
), 朱平宗1,2, 罗伏林1,2, 王定斌1,2, 陈晓燕1,2(
)
收稿日期:2024-12-26
修回日期:2025-03-10
出版日期:2025-11-20
发布日期:2025-10-09
通讯作者:
陈晓燕
作者简介:E-mail: c400716@126.com基金资助:
Sheng-hui ZHANG1,2(
), Ping-zong ZHU1,2, Fu-lin LUO1,2, Ding-bin WANG1,2, Xiao-yan CHEN1,2(
)
Received:2024-12-26
Revised:2025-03-10
Online:2025-11-20
Published:2025-10-09
Contact:
Xiao-yan CHEN
摘要:
西南丘陵山区新建梯田边坎易受到降水冲刷,进而形成侵蚀沟,导致严重的水土流失问题。本研究在重庆市石柱县新建高标准农田区选取了草本植被覆盖、生物结皮覆盖和裸地(对照)梯田边坎,探究了典型地表覆盖物对梯田边坎土壤可蚀性的影响。结果表明,相较于裸地边坎,草本植被覆盖和生物结皮覆盖显著提高了梯田边坎的土壤饱和导水率、团聚体平均质量直径、平均水滴数和粘聚力,显著降低了梯田边坎土壤可蚀性K因子、崩解速率、最大崩解率和土壤可蚀性能综合指数(CSEI)。与裸地边坎相比,草本植被覆盖和生物结皮覆盖边坎的CSEI分别降低了57.7%和35.6%,然而,不同覆盖类型的梯田边坎在不同生长周期内CSEI的变化规律存在差异:裸地和草本植被覆盖的CSEI呈逐渐减小趋势,裸地CSEI由0.82减小到0.60,草本植被CSEI由0.45减小到0.14;而生物结皮覆盖的CSEI则表现为先减小后增大,CSEI由7月的0.45减小到8月的0.24,然后增大到11月的0.58。通径分析表明,草本植被覆盖边坎CSEI变化主要由植被生长驱动的土壤结构变化引起;生物结皮覆盖的边坎变化则与生物结皮的固结作用密切相关;裸地边坎的变化则主要受有机质含量变化的影响。本研究揭示了梯田边坎不同覆盖类型对土壤可蚀性的影响机制,为提升梯田边坎稳定性提供了理论支持和实践依据。
张胜辉, 朱平宗, 罗伏林, 王定斌, 陈晓燕. 典型地表覆盖物对西南丘陵山区梯田边坎土壤可蚀性的影响[J]. 草业学报, 2025, 34(11): 40-52.
Sheng-hui ZHANG, Ping-zong ZHU, Fu-lin LUO, Ding-bin WANG, Xiao-yan CHEN. Effects of typical surface cover types on the soil erodibility of terrace risers in the hilly regions of southwestern China[J]. Acta Prataculturae Sinica, 2025, 34(11): 40-52.
图3 不同地表覆盖类型梯田边坎近地表土壤性质差异不同小写字母表示不同地表覆盖类型间差异显著(P<0.05)。Different lowercase letters indicate significant differences among different land cover types (P<0.05). 下同The same below.
Fig.3 Differences in near-surface soil properties of terrace embankments under different surface cover types
边坎类型 Edge type | 地表覆 盖度 Coverage | 结皮厚度 Biological crust thickness | 砂粒含量Sand content | 粉粒含量Silt content | 黏粒含量Clay content | 容重 Bulk density | 总孔隙度 Total porosity | 毛管孔隙度 Capillary porosity | 田间持水量Field capacity | 有机质含量Organic matter content |
|---|---|---|---|---|---|---|---|---|---|---|
| 草本植被Herbaceous | -0.53** | - | 0.10 | -0.12 | 0.04 | 0.51** | -0.51** | -0.06* | -0.21 | -0.15 |
| 生物结皮Biological crust | 0.51** | -0.64** | 0.38** | -0.38** | -0.14 | 0.29* | -0.29* | -0.17* | -0.17 | -0.69** |
| 裸地Bare | - | - | -0.18 | 0.23 | -0.35** | 0.35** | -0.35** | -0.15* | -0.22 | -0.80** |
表1 土壤可蚀性综合指数与近地表特征之间相关分析结果
Table 1 The result of Pearson correlation between comprehensive soil erodibility index and near surface characteristics
边坎类型 Edge type | 地表覆 盖度 Coverage | 结皮厚度 Biological crust thickness | 砂粒含量Sand content | 粉粒含量Silt content | 黏粒含量Clay content | 容重 Bulk density | 总孔隙度 Total porosity | 毛管孔隙度 Capillary porosity | 田间持水量Field capacity | 有机质含量Organic matter content |
|---|---|---|---|---|---|---|---|---|---|---|
| 草本植被Herbaceous | -0.53** | - | 0.10 | -0.12 | 0.04 | 0.51** | -0.51** | -0.06* | -0.21 | -0.15 |
| 生物结皮Biological crust | 0.51** | -0.64** | 0.38** | -0.38** | -0.14 | 0.29* | -0.29* | -0.17* | -0.17 | -0.69** |
| 裸地Bare | - | - | -0.18 | 0.23 | -0.35** | 0.35** | -0.35** | -0.15* | -0.22 | -0.80** |
自变量 Argument | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficient | 总通径系数 Total path coefficient | |||
|---|---|---|---|---|---|---|
植被覆盖度 Vegetation coverage | 总孔隙度 Total porosity | 毛管孔隙度 Capillary porosity | 合计 Total | |||
| 植被覆盖度Vegetation coverage | -0.436 | - | -0.153 | -0.126 | -0.279 | -0.715 |
| 总孔隙度Total porosity | -0.519 | -0.182 | - | -0.257 | -0.439 | -0.958 |
| 毛管孔隙度Capillary porosity | -0.320 | -0.107 | -0.230 | - | -0.337 | -0.658 |
表2 草本覆盖边坎土壤可蚀性综合指数变化通径分析结果
Table 2 The path analysis result for seasonal variation in comprehensive soil erodibility index of herbaceous covered terraced edge
自变量 Argument | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficient | 总通径系数 Total path coefficient | |||
|---|---|---|---|---|---|---|
植被覆盖度 Vegetation coverage | 总孔隙度 Total porosity | 毛管孔隙度 Capillary porosity | 合计 Total | |||
| 植被覆盖度Vegetation coverage | -0.436 | - | -0.153 | -0.126 | -0.279 | -0.715 |
| 总孔隙度Total porosity | -0.519 | -0.182 | - | -0.257 | -0.439 | -0.958 |
| 毛管孔隙度Capillary porosity | -0.320 | -0.107 | -0.230 | - | -0.337 | -0.658 |
自变量 Argument | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficient | 总通径系数Total path coefficient | ||||
|---|---|---|---|---|---|---|---|
| 有机质Organic matter content | 结皮厚度Biological crust thickness | 毛管孔隙度 Capillary porosity | 砂粒含量Sand content | 合计Total | |||
| 有机质含量Organic matter content | -0.299 | - | -0.194 | 0.009 | 0.064 | -0.121 | -0.420 |
| 结皮厚度Biological crust thickness | -0.528 | -0.343 | - | 0.155 | -0.147 | -0.335 | -0.863 |
| 毛管孔隙度Capillary porosity | -0.271 | 0.008 | 0.134 | - | 0.060 | 0.203 | -0.068 |
| 砂粒含量Sand content | 0.260 | -0.056 | 0.002 | -0.058 | - | -0.111 | 0.149 |
表3 生物结皮覆盖边坎土壤可蚀性综合指数变化通径分析结果
Table 3 The path analysis result for seasonal variation in comprehensive soil erodibility index of biocrust covered terraced edge
自变量 Argument | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficient | 总通径系数Total path coefficient | ||||
|---|---|---|---|---|---|---|---|
| 有机质Organic matter content | 结皮厚度Biological crust thickness | 毛管孔隙度 Capillary porosity | 砂粒含量Sand content | 合计Total | |||
| 有机质含量Organic matter content | -0.299 | - | -0.194 | 0.009 | 0.064 | -0.121 | -0.420 |
| 结皮厚度Biological crust thickness | -0.528 | -0.343 | - | 0.155 | -0.147 | -0.335 | -0.863 |
| 毛管孔隙度Capillary porosity | -0.271 | 0.008 | 0.134 | - | 0.060 | 0.203 | -0.068 |
| 砂粒含量Sand content | 0.260 | -0.056 | 0.002 | -0.058 | - | -0.111 | 0.149 |
自变量 Argument | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficient | 总通径系数Total path coefficient | ||
|---|---|---|---|---|---|
| 有机质Organic matter content | 粉粒含量Silt content | 合计Total | |||
| 有机质含量Organic matter content | -0.790 | - | 0.030 | 0.030 | -0.760 |
| 粉粒含量Silt content | 0.197 | -0.007 | - | -0.007 | 0.190 |
表4 裸地梯田边坎土壤可蚀性综合指数通径分析结果
Table 4 The path analysis result for seasonal variation in comprehensive soil erodibility index of bare terraced edge
自变量 Argument | 直接通径系数 Direct path coefficient | 间接通径系数Indirect path coefficient | 总通径系数Total path coefficient | ||
|---|---|---|---|---|---|
| 有机质Organic matter content | 粉粒含量Silt content | 合计Total | |||
| 有机质含量Organic matter content | -0.790 | - | 0.030 | 0.030 | -0.760 |
| 粉粒含量Silt content | 0.197 | -0.007 | - | -0.007 | 0.190 |
| [1] | Wang B, Zhang G H, Shi Y Y, et al. Effect of natural restoration time of abandoned farmland on soil detachment by overland flow in the Loess Plateau of China. Earth Surface Processes and Landforms, 2013, 38(14): 1725-1734. |
| [2] | Sun L, Zhang G H, Luan L L, et al. Temporal variation in soil resistance to flowing water erosion for soil incorporated with plant litters in the Loess Plateau of China. Catena, 2016, 145: 239-245. |
| [3] | China State Council. The state council’s approval of the national land consolidation plan (2016-2020). The State Council Gazette of the People’s Republic of China, 2017(2): 96-97. |
| 国务院. 国务院关于全国土地整治规划(2016-2020年)的批复. 中华人民共和国国务院公报, 2017(2): 96-97. | |
| [4] | Stoof C R, Ferreira A J D, Mol W, et al. Soil surface changes increase runoff and erosion risk after a low-moderate severity fire. Geoderma, 2015, 239/240: 58-67. |
| [5] | Zhang B J, Zhang G H, Zhu P Z, et al. Temporal variations in soil erodibility indicators of vegetation-restored steep gully slopes on the Loess Plateau of China. Agriculture, Ecosystems and Environment, 2019, 286: 106661. |
| [6] | Yang F, Zhang K D, Yang M Y, et al. Experimental study on hydraulic characteristics of flow under vegetation stem. Journal of Sediment Research, 2016(4): 22-27. |
| 杨帆, 张宽地, 杨明义, 等. 植物茎秆影响坡面径流水动力学特性研究. 泥沙研究, 2016(4): 22-27. | |
| [7] | Wang B, Zhang G H. Quantifying the binding and bonding effects of plant roots on soil detachment by overland flow in 10 typical grasslands on the Loess Plateau. Soil Science Society of America Journal, 2017, 81(6): 1567-1576. |
| [8] | Wang B, Zhang G H, Yang Y F, et al. Response of soil detachment capacity to plant root and soil properties in typical grasslands on the Loess Plateau. Agriculture, Ecosystems and Environment, 2018, 266: 68-75. |
| [9] | Wang D D, Xu H C, Shan Z J, et al. Effects of Robinia pseudoacacia litter cover and roots on soil erosion in the Loess Plateau, China. Journal of Soil and Water Conservation, 2023, 37(2): 83-89. |
| 王丹丹, 许海超, 单志杰, 等. 黄土高原刺槐林地根系与枯落物对土壤侵蚀的影响. 水土保持学报, 2023, 37(2): 83-89. | |
| [10] | Davis D D, Horton R, Heitman J L, et al. Wettability and hysteresis effects on water sorption in relatively dry soil. Soil Science Society of America Journal, 2009, 73(6): 1947-1951. |
| [11] | Wang H, Zhang G H, Li N N, et al. Soil erodibility influenced by natural restoration time of abandoned farmland on the Loess Plateau of China. Geoderma, 2018, 325(4): 18-27. |
| [12] | Lan S, Wu L, Adessi A, et al. Cyanobacterial persistence and influence on microbial community dynamics over 15 years in induced biocrusts. Environment Microbiology, 2022, 24(1): 66-81. |
| [13] | Liu F, Zhang G H, Sun F, et al. Quantifying the surface covering, binding and bonding effects of biological soil crusts on soil detachment by overland flow. Earth Surface Processes and Landforms, 2017, 42(15): 2640-2648. |
| [14] | Wang H, Zhang G H, Li N N, et al. Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China. Catena, 2019, 174(3): 24-35. |
| [15] | Zhu P Z, Feng T, Yang L, et al. Biological soil crusts decrease soil erodibility of economic fruit forests land through its consolidation effect in the Three Gorges Reservoir area. Catena, 2024, 243: 108200. |
| [16] | Zhang C H, Xiao B, Li S L, et al. Characteristics of biocrusts in croplands and their effects on surface soil disintegration in the black soil region of northeast China. Chinese Journal of Applied Ecology, 2022, 33(7): 1773-1782. |
| 张晨晖, 肖波, 李胜龙, 等. 东北黑土区农田生物结皮的特征及其对表层土壤崩解的影响. 应用生态学报, 2022, 33(7): 1773-1782. | |
| [17] | Zuo X F, Wang L, Zheng F L, et al. Effects of freeze-thaw cycles and soil properties on mollisol shear strength in Chinese black soil region. Journal of Soil and Water Conservation, 2020, 34(2): 30-35, 42. |
| 左小锋, 王磊, 郑粉莉, 等. 冻融循环和土壤性质对东北黑土抗剪强度的影响. 水土保持学报, 2020, 34(2): 30-35, 42. | |
| [18] | Zhang K L, Peng W Y, Yang H L. Soil erodibility and its estimation for agricultural soil in china. Acta Pedologica Sinica, 2007, 44(1): 7-13. |
| 张科利, 彭文英, 杨红丽. 中国土壤可蚀性值及其估算. 土壤学报, 2007, 44(1): 7-13. | |
| [19] | Cui X W, Zhang X F, Liang S M. Correlation between comprehensive soil erodibility index and environmental factors in the Qilian Mountains, China. Mountain Research, 2024, 42(1): 14-26. |
| 崔晓薇, 张喜风, 梁水明. 祁连山综合土壤可蚀性指数与环境因子的关联性. 山地学报, 2024, 42(1): 14-26. | |
| [20] | Liu G, Xu M, Ritsema C. A study of soil surface characteristics in a small watershed in the hilly, gullied area on the Chinese Loess Plateau. Catena, 2003, 54(1): 31-44. |
| [21] | Ping Y, Tan T H, Li Y C, et al. Soil properties change and soil detachment response driven by biocrusts in typical small watershed of Danjiangkou Reservoir Area. Journal of Soil and Water Conservation, 2023, 37(3): 87-94. |
| 平原, 澹腾辉, 李雨晨, 等. 丹江口库区典型小流域生物结皮驱动土壤性质变化及分离响应. 水土保持学报, 2023, 37(3): 87-94. | |
| [22] | Zhang G H, Yi L, Ding W F, et al. Effects of moss biocrust on soil water infiltration in the Three Gorges Reservoir Area, China. Chinese Journal of Applied Ecology, 2022, 33(7): 1835-1842. |
| 张冠华, 易亮, 丁文峰, 等. 三峡库区苔藓生物结皮对土壤水分入渗的影响. 应用生态学报, 2022, 33(7): 1835-1842. | |
| [23] | Baets S D, Poesen J, Gyssels G, et al. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology, 2006, 76(1/2): 54-67. |
| [24] | Gyssels G. Impact of plant roots on the resistance of soils to erosion by water: a review. Progress in Physical Geography, 2005, 29(2): 189-217. |
| [25] | Yang K, Zhao Y G, Ma X X. Water stability of biological soil crusts in hilly regions of Loess Plateau, northwest China. Chinese Journal of Applied Ecology, 2012, 23(1): 173-177. |
| 杨凯, 赵允格, 马昕昕. 黄土丘陵区生物土壤结皮层水稳性. 应用生态学报, 2012, 23(1): 173-177. | |
| [26] | Wang H, Zhang G H, Liu F, et al. Temporal variations in infiltration properties of biological crusts covered soils on the Loess Plateau of China. Catena, 2017, 159: 115-125. |
| [27] | Mi G Y, Ping Y, Zhao Y J, et al. Seasonal variation of soil detachment capacity induced by moss crusts in red soil hilly area. Acta Ecologica Sinica, 2024, 44(22): 10391-10400. |
| 宓桂音, 平原, 赵娅君, 等. 红壤丘陵区苔藓结皮土壤分离能力季节变化特征.生态学报, 2024, 44(22): 10391-10400. | |
| [28] | Wang Y N, Ma J M, Liang Y M, et al. Variations of microbial communities and enzyme activities in rhizosphere and non-rhizosphere soils of aged Loropetalum chinense forests on Karst rocky mountains during dry and rainy seasons. Guihaia, 2024, 44(10): 1848-1863. |
| 王雅楠, 马姜明, 梁月明, 等. 喀斯特石山老龄林檵木根际和非根际土壤微生物群落及酶活性的旱、雨季节变化. 广西植物, 2024, 44(10): 1848-1863. | |
| [29] | Zha X, Tang K L, Zhang K L, et al. Study on the influence of vegetation on soil characteristics and soil erosion. Journal of Soil and Water Conservation, 1992(2): 52-58. |
| 查轩, 唐克丽, 张科利, 等. 植被对土壤特性及土壤侵蚀的影响研究. 水土保持学报, 1992(2): 52-58. | |
| [30] | Gao L Q, Bowker M A, Xu M X, et al. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biology and Biochemistry, 2017, 105(4): 49-58. |
| [31] | Gong J, Chen L D, Fu B J, et al. Effect of land use on soil nutrients in the loess hilly area of the Loess Plateau China. Land Degradation and Development, 2006, 5(17): 453-465. |
| [1] | 王光沛, 魏艳, 谌芸. 紫花苜蓿根系构型和力学特征对生长时间的响应[J]. 草业学报, 2025, 34(4): 82-92. |
| [2] | 李铁, 王润泽, 谌芸, 何丙辉, 周涛, 吴晨, 刘枭宏. PAM和草类根系对荒坡紫色土物理性质与抗剪性能的影响[J]. 草业学报, 2018, 27(2): 69-78. |
| [3] | 林慧龙,王苗苗,李学玲,王钊齐. 在模拟降水和践踏处理复合作用下长芒草典型草原土壤可蚀性研究[J]. 草业学报, 2010, 19(3): 76-87. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||