[1] 彭琴, 董云社, 齐玉春. 氮输入对陆地生态系统碳循环关键过程的影响[J]. 地球科学进展, 2008, 23(8): 874-883. [2] 王贺正, 张均, 吴金芝, 等. 不同氮素水平对小麦旗叶生理特性和产量的影响[J]. 草业学报, 2013, 22(4): 69-75. [3] Hessen O, gren I, Anderson R, et al. Carbon sequestration in ecosystems: The role of stoichiometry[J]. Ecology, 2004, 85(5): 1179-1192. [4] Holland E A, Dentene F J R, Braswell B H, et al. Contemporary and pre-industrial global reactive nitrogen budgets[J]. Biogeochemistry, 1999, 46: 7-43. [5] Vitousek P M, Httenschwiler S, Olander L, et al. Nitrogen and nature[J]. AMBIO, 2002, 31(2): 97-101. [6] Markus D, Daniel S, Almeida J P F, et al. Yield response of Lolium perenne swards to free air and CO2 enrichment increased over six years in high N input system on fertile soil[J]. Global Change Biology, 2000, 6: 805-816. [7] 李考学. 氮沉降对凋落物分解早期碳氮周转的影响[D]. 哈尔滨: 东北林业大学, 2006. [8] Galloway J N, Levy II H, Kasibhatla P S. 2020年: 人口增长和发展对氧化氮沉降的影响[J]. 人类环境杂志, 1994, 23(2): 120-123. [9] Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494: 459-463. [10] 陈秋凤. 杉木人工林林木养分和凋落物分解对模拟氮沉降的响应[D]. 福州: 福建林业大学, 2006. [11] 俞华林, 张恩和, 王琦, 等. 灌溉和施氮对免耕留茬春小麦农田土壤有机碳、全氮和籽粒产量的影响[J]. 草业学报, 2013, 22(3): 227-233. [12] Shimel D S. Terrestrial ecosystem and the carbon cycle[J]. Global Change Biology, 1995, 1: 77-91. [13] Lai R. World soils and the greenhouse effect[J]. Global Change Newsletter, 1999, 37: 4-5. [14] 张英俊, 杨高文, 刘楠, 等. 草原碳汇管理对策[J]. 草业学报, 2013, 22(2): 290-299. [15] 张金波, 宋长春. 土地利用方式对土壤碳库影响的敏感性评价指标[J]. 生态环境, 2003, 12(4): 500-504. [16] 张旭辉, 李恋卿, 潘根兴. 不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J]. 生态学杂志, 2001, 20(2): 16-19. [17] Patton W J, Schimel D S, Coleand C V, et al. Analysis of factors controlling soil organic mater levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51: 1173-1179. [18] 赵明东, 罗晓红, 刘淑霞. 土壤活性有机碳养分有效性与作物产量的关系[J]. 安徽农业科学, 2006, 34(4): 732-733, 748. [19] 李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, (4): 544-552. [20] 刘德燕, 宋长春. 磷输入对湿地土壤有机碳矿化及可溶性碳组分的影响[J]. 中国环境科学, 2008, 28(9): 769-774. [21] 陈涛, 郝晓晖, 杜丽君, 等. 长期施肥对水稻土土壤有机碳矿化的影响[J]. 应用生态学报, 2008, 19(7): 1494-1500. [22] Wang Z P, Delaune R D, Lindau C W. Methane production from anaerobic soil amended with rice straw and nitrogen fertilizer[J]. Fertilizer Research, 1992, 33: 115-121. [23] Yahi K, Minami K. Effects of organic matter application on methane emission from some Japanese paddy fields[J]. Soil Science Plant Nutrition, 1990, 36: 559-610. [24] Williams C F, Agassi M, Letey J, et al. Facilitated transport of napropamide by dissolved organic matter through soil columns[J]. Soil Science Society of America Journal, 2000, 64: 590-594. [25] Lehman R M, Mills A L. Field evidence for copper mobilixation by dissolved organic matter[J]. Water Research, 1994, 28(12): 2487-2497. [26] Amrhein C, Strong J B, Mosher P A. Effect of deicing salts on metal and organic matter mobilization in roadside soils[J]. Environmental Science and Technology, 1992, 26: 708-709. [27] Bowden R D, Davidon E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest[J]. Forest Ecology and Management, 2004, 196: 43-56. [28] Castro M S, Peterjohn W T, Melillo J M, et al. Effects of nitrogen fertilization on the fluxes of N2O, CH4 and CO2 from soils in a Florida slash pine plantation[J]. Canadian Journal of Forest Research, 1994, 24: 9-13. [29] Bauer G A, Bazzaz F A, Minocha R, et al. Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States[J]. Forest Ecology and Management, 2004, 196: 173-186. [30] McDowell W H, Currie W S, Aber J D, et al. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils[J]. Water, Air and Soil Pollution, 1998, 105: 175-182. [31] Boxman A W, Blanck K, Brandrud T E, et al. Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX project[J]. Forest Ecology and Management, 1998, 101: 65-80. [32] Vries W D, Reinds G J, Gundersen P, et al. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils[J]. Global Change Biology, 2006, 12: 1151-1173. [33] Goddard M R, Bradford M A. The adaptive response of a natural microbial population to carbon- and nitrogen-limitation[J]. Ecology Letters, 2003, 6: 594-598. [34] Sjberg G, Bergkvist B, Berggren D, et al. Long-term N addition effects on the C mineralization and DOC production in mor humus under spruce[J]. Soil Biology and Biochemistry, 2003, 35: 1305-1315. [35] 李德军, 莫江明, 方运霆, 等. 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响[J]. 植物生态学报, 2005, 29(4): 543-549. [36] 李德军, 莫江明, 方运霆, 等. 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响[J]. 生态学报, 2004, 24(5): 876-882. [37] 徐国良, 莫江明, 周国逸, 等. 氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系[J]. 生态环境, 2005, 14(6): 901-907. [38] 方华, 莫江明. 氮沉降对森林凋落物分解的影响[J]. 生态学报, 2006, 26(9): 3127-3136. [39] 曹裕松, 李志安, 傅声雷, 等. 模拟氮沉降对鹤山3种人工林表土碳释放的影响[J]. 江西农业大学学报, 2006, 28(1): 101-105. [40] 范志强, 王政权, 吴楚, 等. 不同供氮水平对水曲柳苗木生物及其季节变化的影响[J]. 应用生态学报, 2004, 15(9): 1497-1501. [41] 孙文娟, 黄耀, 陈书涛, 等. 稻麦作物呼吸作用与植株氮含量、生物量和温度的定量关系[J]. 生态学报, 2005, 25(5): 1152-1158. [42] 黄耀, 杨兆芳, 于永强, 等. 稻麦作物净初级生产力模型研究: 模型的建立[J]. 环境科学, 2005, 26(2): 11-15. [43] 黄耀, 沈雨, 周密, 等. 木质素和氮含量对植物残体分解的影响[J]. 植物生态学报, 2003, 27(2): 183-188. [44] 孙文娟, 黄耀, 陈书涛. 作物生长和氮含量对土壤-作物系统CO2排放的影响[J]. 环境科学, 2004, 25(3): 1-6. [45] 杨兰芳, 蔡祖聪. 玉米生长和施氮水平对土壤有机碳更新的影响[J]. 环境科学学报, 2006, 26(2): 280-286. [46] 杨兰芳, 蔡祖聪. 玉米生长中的土壤呼吸及其受氮肥施用的影响[J]. 土壤学报, 2005, 42(1): 9-15. [47] 蒋家慧. 氮肥运筹对小麦碳素同化、运转和产量的影响[J]. 麦类作物学报, 2004, 24(3): 69-72. [48] 宋长春, 张金波, 张丽华. 氮素输入影响下淡水湿地碳过程变化[J]. 地球科学进展, 2005, 20(11): 1249-1255. [49] 张丽华, 宋长春, 王德宣. 沼泽湿地CO2、CH4、N2O排放对氮输入的响应[J]. 环境科学学报, 2005, 25(8): 1112-1118. [50] 张丽华, 宋长春, 王德宣, 等. 氮输入对陆地生态系统碳库的影响研究进展[J]. 土壤通报, 2006, 37(2): 356-361. [51] 张丽华, 宋长春, 王德宣. 氮输入对沼泽湿地碳平衡的影响[J]. 环境科学, 2006, 27(7): 1257-1263. [52] Post W M, Izaurralde R C, Mann L K, et al. Montoring and verifying changes of organic carbon in soil[J]. Climatic Change, 2001, 51: 73-991. [53] Silveira M L, Liu K S, Sollenberger L E, et al. Short-term effects of grazing intensity and nitrogen fertilization on soil organic carbon pools under perennial grass pastures in the southeastern USA[J]. Soil Biology and Biochemistry, 2013, 58: 42-49. [54] Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1993, 57: 1071-1076. [55] Paul E A, Morris S J, Bohm S. The determination of soil C pool sizes and turnover rates: biophysical fractionation and tracers[A]. In: Lal R (Eds.). Assessment Methods for Soil Carbon[M]. New York: Lewis Publishers, 2001: 193-205. [56] Franzluebbers A J, Stuedemann J. Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA[J]. Environmental Pollution, 2002, 116: S53-S62. [57] Zeng D H, Li L J, Timothy J F, et al. Effects of nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland[J]. Biogeochemistry, 2010, 98: 185-193. [58] 肖胜生. 温带半干旱草地生态系统碳固定及土壤有机碳库对外源氮输入的响应[D]. 北京: 中国科学院地理科学与资源研究所, 2010. [59] 樊后保, 袁颖红, 王强, 等. 氮沉降对杉木人工林土壤有机碳和全氮的影响[J]. 福建林学院学报, 2007, 27(1): 1-6. [60] Hueso R O, Maestre F T, Ríos A, et al. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems[J]. Environmental Pollution, 2013, 179: 185-193. [61] Nadelhoffer K J, Emmett B A, Gundersen P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 1999, 398: 145-147. [62] Huang Z Q, Clinton P W, Baisden W T, et al. Long-term nitrogen additions increased surface soil carbon concentration in a forest plantation despite elevated decomposition[J]. Soil Biology and Biochemistry, 2011, 43: 302-307. [63] Huang Q R, Hu F, Huang S, et al. Effect of long-term fertilization on organic carbon and nitrogen in a subtropical paddy soil[J]. Pedosphere, 2009, 19(6): 727-734. [64] Diels J, Vanlauwe B, Vander M M K, et al. Long-term soil organic carbon dynamics in a subhumid tropical climate: 13C data in mixed C3/C4 cropping and modeling with ROTHC[J]. Soil Biology and Biochemistry, 2004, 36: 1739-1750. [65] Franzluebbers A J, Arshed M A. Particulate organic content and potential mineralization as affected by tillage and texture[J]. Soil Science Society of America Journal, 1997, 61: 1382-1386. [66] Wu T Y, Jeff J S, Li F M, et al. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China[J]. Soil and Tillage Research, 2004, 77: 59-68. [67] Ji Y J, Rattan L. Impacts of nitrogen fertilization on biomass production of switchgrass (Panicum Virgatum L.) and changes in soil organic carbon in Ohio[J]. Geoderma, 2011, 166: 145-152. [68] Anderson T K J, Davis S C, Masters M D, et al. Changes in soil organic carbon under biofuel crops[J]. GCB Bioenergy, 2009, 1: 75-96. [69] Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. European Journal of Soil Science, 2001, 52: 345-353. [70] Conant R T, Easter M, Paustian K, et al. Impacts of periodic tillage on soil C stocks: a synthesis[J]. Soil and Tillage Research, 2007, 95: 1-10. [71] 俞元春, 李淑芬. 江苏下蜀林区土壤溶解有机碳与土壤因子的关系[J]. 土壤学报, 2003, 35(5): 424-428. [72] Biederbeck B O, Zentner R P. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology and Biochemistry, 1994, 26(12): 1647-1656. [73] 李淑芬, 俞元春, 何晟. 土壤溶解有机碳的研究进展[J]. 土壤与环境, 2002, 11(4): 422-429. [74] 王清奎, 汪思龙, 冯宗炜, 等. 土壤活性有机质及其与土壤质量的关系[J]. 生态学报, 2005, 25(3): 513-519. [75] Yano Y, McDowell W H, Aber J D. Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition[J]. Soil Biology and Biochemistry, 2000, 32: 1743-1751. [76] Sinsabaugh R L, Zak D R, Gallo M, et al. Nitrogen deposition and dissolved organic carbon production in northern temperate forests[J]. Soil Biology and Biochemistry, 2004, 36: 1509-1515. [77] McDowell W H, Magill A H, Aitkenhead P J A, et al. Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution[J]. Forest Ecology and Management, 2004, 196: 29-41. [78] Demoling F, Nilsson L O, Bth E. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils[J]. Soil Biology and Biochemistry, 2008, 40: 370-379. [79] Fog K. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biological Reviews, 1988, 63: 433-462. [80] Aber J D. Nitrogen cycling and nitrogen saturation in temperate forest ecosystems[J]. Trends in Ecology and Evolution, 1992, 7: 220-223. [81] Currie W S, Aber J D, McDowell W H, et al. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests[J]. Biogeochemistry, 1996, 35: 471-505. [82] 刘德燕, 宋长春, 王丽, 等. 外源氮输入对湿地土壤有机碳矿化及可溶性有机碳的影响[J]. 环境科学, 2008, 29(12): 3525-3530. [83] Findlay S E G. Increased carbon transport in the Hudson River: Unexpected consequence of nitrogen deposition?[J]. Frontiers in Ecology and The Environment, 2005, 3(3): 133-137. [84] Zhang N L, Wan S Q, Li L H, et al. Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China[J]. Plant Soil, 2008, 311: 19-28. [85] 何亚婷, 齐玉春, 董云社, 等. 外源氮输入对草地土壤微生物特性影响的研究进展[J]. 地球科学进展, 2010, 25(8): 877-885. [86] 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量及其应用[M]. 北京: 气象出版社, 2006: 54-61. [87] 涂利华, 胡庭兴, 张健, 等. 模拟氮沉降对华西雨屏区慈竹林土壤活性有机碳库和根生物量的影响[J]. 生态学报, 2010, 30(9): 2286-2294. [88] Mo J, Zhang W, Zhu W, et al. Nitrogen addition reduces soil respiration in amature tropical forest in southern China[J]. Global Change Biology, 2008, 14: 1-10. [89] 王晖, 莫江明, 鲁显楷, 等. 南亚热带森林土壤微生物量碳对氮沉降的响应[J]. 生态学报, 2008, 28(2): 470-478. [90] 朱志建, 姜培坤, 徐秋芳. 不同森林植被下土壤微生物量碳和易氧化态碳的比较[J]. 林业科学研究, 2006, 19(4): 523-526. [91] 王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响[J]. 生态学报, 2013, 33(10): 3103-3113. [92] 艾孜古丽·木拉提, 同延安, 杨宪龙, 等. 不同施肥对农田土壤有机碳及其组分的影响[J]. 土壤通报, 2012, 43(6): 1461-1466. [93] Insam H, Parkinson D, Domsch K H. Influence of macroclimate on soil microbial biomass[J]. Soil Biology and Biochemistry, 1989, 21: 211-221. [94] Kaye J P, Hart S C. Competition for nitrogen between plants and soil microorganisms[J]. Trends in Ecology and Evolution, 1997, 12: 139-143. [95] Bradley K, Drijber R A, Knops J. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi[J]. Soil Biology and Biogeochemistry, 2006, 38: 1583-1595. [96] 陈能汪, 洪华生, 张珞平. 九龙江流域大气氮湿沉降研究[J]. 环境科学, 2008, 29(1): 38-46. [97] 樊建凌, 胡正义, 庄舜尧, 等. 林地大气氮沉降的观测研究[J]. 中国环境科学, 2007, 27(1): 7-9. [98] 沈健林, 刘学军, 张福锁. 北京近郊农田大气NH3与NO2干沉降研究[J]. 土壤学报, 2008, 45(1): 165-169. [99] 程淑兰, 方华军, 马艳. 氮输入对森林土壤有机碳截存与损耗过程的影响[J]. 水土保持学报, 2007, 21(5): 82-85. [100] 吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应[J]. 植物生态学报, 2007, 31(2): 205-218. [101] Magill A H, Aber J D, Currie W S, et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA[J]. Forest Ecology and Management, 2004, 196: 7-28. |