欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2014, Vol. 23 ›› Issue (6): 327-335.DOI: 10.11686/cyxb20140639

• 论文 • 上一篇    下一篇

氮高效利用基因型水稻干物质生产和氮素积累特性

戢林,杨欢,李廷轩*,张锡洲,余海英   

  1. 四川农业大学资源环境学院,四川 成都 611130
  • 收稿日期:2013-12-12 出版日期:2014-12-20 发布日期:2014-12-20
  • 通讯作者: E-mail:litinx@263.net
  • 作者简介:戢林(1984-),男,四川简阳人,讲师,博士
  • 基金资助:
    国家自然科学基金(40901138),国家科技支撑计划子课题(2008BAD98B03)和四川省科技厅应用基础项目(2010JY0083)资助

Dry matter production and nitrogen accumulation of rice genotypes with different nitrogen use efficiencies

JI Lin,YANG Huan,LI Ting-xuan,ZHANG Xi-zhou,YU Hai-ying   

  1. College of Resource and Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2013-12-12 Online:2014-12-20 Published:2014-12-20

摘要: 采用土培试验,研究氮高效利用基因型水稻不同生育阶段干物质生产特性和氮素积累特征,并探讨其与产量和氮素利用效率关系。结果表明,1)高效基因型水稻在保证高产的同时也具有较高的氮素利用效率,产量为低效基因型的1.74~2.37倍,氮素籽粒生产效率较低效基因型高23.97%~70.55%。2)高效基因型干物质量积累高峰期出现在抽穗-成熟阶段,而低效基因型出现在分蘖-拔节阶段;高效基因型干物质量在分蘖-拔节、拔节-抽穗、抽穗-成熟阶段分别是低效基因型的1.12,1.49和5.85倍,差异显著。3)高效基因型在分蘖期(移栽后32 d)进入氮素高速积累时期,并在48 d时积累速率达到最高(美国谷、IR31892-100-3-3-3、IRIT216分别为11.32,12.36和15.83 mg/d·株),且持续时间长达49 d;而低效基因型也是在分蘖期进入氮素高积累时期,并在37 d时积累速率达到最高(加早935、IR32429分别为9.31和7.25 mg/d·株),但维持高积累速率的时间较高效基因型短12 d。4)抽穗-成熟阶段水稻干物质量和氮素积累量对产量的影响程度最大,贡献率分别为62.65%和47.42%;对氮素籽粒生产效率的贡献率分别为14.51%和8.77%,对氮素收获指数的贡献率分别为22.14%和15.90%。表明,抽穗至成熟期水稻干物质积累和氮素的积累与产量和氮素利用效率的提高关系密切,分蘖至抽穗期是水稻氮素营养管理的关键阶段。

Abstract: Nitrogen plays an important role in promoting plant growth and development. The purpose of this study was to investigate the characteristics of dry matter production and nitrogen accumulation for rice genotypes with different nitrogen use efficiencies (NUE) and to analyse the relationship between grain yield and NUE. A soil culture pot experiment was carried out at Sichuan Agricultural University, Sichuan province, China in 2009. The grain yield of high NUE genotypes was 1.74-2.37 times higher than that of low NUE genotypes, while NUE of high NUE genotypes was 23.97%-70.55% higher than that of low NUE genotypes. Dry matter weight of high NUE genotypes was significantly higher than that of low NUE genotypes at all growth stages, which were 1.12, 1.49 and 5.85 times higher than that of low NUE genotypes at tillering-to-jointing stage, jointing-to-heading stage and heading-to-maturity stages respectively. The peak dry matter weight of high NUE genotypes occurred at heading-to-maturity stage, while that of low NUE genotypes occurring at tillering-to-jointing stage. Nitrogen accumulation rate of high NUE genotypes increased faster in the early stages, and achieved a maximum 30-50 d after transplanting, then slowed down. Maximum nitrogen accumulation rates of Meigugu, IR31892-100-3-3-3 and IRIT216 were 11.32, 12.36 and 15.83 mg/(d·plant), which were respectively 1.22, 1.33 and 1.70 times higher than Jiazao 935; and, respectively, 1.56, 1.70 and 2.18 times higher than IR32429 with low NUE respectively. High NUE genotypes can maintain higher rates of nitrogen accumulation for longer, with an average duration of 49 d from tillering to heading stages. Low NUE genotypes had a development period 12 d shorter than that of high NUE genotypes. Dry matter weight and nitrogen accumulation at the heading-to-maturity stage were associated, respectively, with 62.65% and 47.42% differernce in rice yield, with 14.51% and 8.77% variation in nitrogen grain production efficiency, and 22.14% and 15.90% variation, respectively, in nitrogen harvest index. In summary, rice dry matter accumulation and nitrogen accumulation were closely related to yield and NUE at the heading-to-maturity stage. Tillering-to-heading is a critical stage for rice nitrogen nutrition management.

中图分类号: