草业学报 ›› 2015, Vol. 24 ›› Issue (8): 199-210.DOI: 10.11686/cyxb2014396
赵玉信, 杨惠敏*
出版日期:
2015-08-20
发布日期:
2015-08-20
通讯作者:
E-mail: huimyang@lzu.edu.cn
作者简介:
赵玉信(1989-),男,甘肃和政人,在读硕士。E-mail: zhaoyx2012@lzu.edu.cn
基金资助:
ZHAO Yu-Xin, YANG Hui-Min*
Online:
2015-08-20
Published:
2015-08-20
摘要: 农田杂草的危害是阻碍农业生产快速、健康发展的主要因素之一。农田杂草的发生受到诸多自然因素的影响和人工措施的调控,而作物格局、土壤耕作和水肥管理是除施用除草剂外最基本的人工干扰措施。本文综述了作物种类和时空格局对杂草的影响,阐述了主要的作物种植模式防治杂草的效果,并比较了不同土壤耕作和水肥管理措施下杂草群落的变化,重点剖析了杂草发生的调控机制,探讨了通过作物与杂草的资源竞争、作物的他感作用及土壤种子库的变化来调控杂草发生的可能机理。综合相关研究发现,合理的轮作和间混套作表现出对田间杂草明显的抑制作用;免耕可以增加杂草的群落多样性,秸秆覆盖能降低杂草密度和生物量;施肥对杂草的影响因作物种类、施肥量和肥料类型等不同而不同,长期均衡施肥能降低杂草密度,增加杂草群落多样性;灌溉和提高自然降水利用效率能抑制旱地杂草,特定时间进行深水管理能够有效控制某些水田杂草。最后,针对目前研究和实践中的具体问题,展望了未来一段时间杂草的研究方向和应用前景。
赵玉信, 杨惠敏. 作物格局、土壤耕作和水肥管理对农田杂草发生的影响及其调控机制[J]. 草业学报, 2015, 24(8): 199-210.
ZHAO Yu-Xin, YANG Hui-Min. Effects of crop pattern, tillage practice and water and fertilizer management on weeds and their control mechanisms[J]. Acta Prataculturae Sinica, 2015, 24(8): 199-210.
[1] Wang L X, Li J. Science of Farm System[M]. Beijing: Science Press, 2003: 278-279. [2] Song D M, Ma D R, Yang Q, et al . Effects of weedy rice on yield and quality and micro-ecological environment in cultivated Japonica rice population. Acta Agronomica Sinica, 2009, 35(5): 914-920. [3] Huang G B, Chai Q. Acting formations and applying development of allelopathy. Chinese Journal of Eco-Agriculture, 2003, 11(3): 172-174. [4] Tu H L. Development in research and controlling of weeds in the fields of China. Pesticide, 2001, 40(3): 1-3. [5] Zhang C X, Hu X E, Qian Y X. Trend of herbicide use in developed countries and current research and future directions in weed science research in China. Acta Phytophylacica Sinica, 1997, 24(3): 278-282. [6] Zhang Z P. Advances in cropland weed management in China. Plant Protection, 2004, 30(2): 28-33. [7] Chen X, Tang J J, Zhao H M, et al . Sustainable utilization of weed diversity resources in agroecosystem. Journal of Natural Resources, 2003, 18(3): 340-346. [8] Guo Y Y. Illustrations with real examples of using ecological regulation strategies against crop pests in China. Plant Protection, 2006, (2): 1-4. [9] Wu L F, Chen B, Ouyang Z. Evolution and advances of cropping system. Tillage and Cultivation, 2002, (3): 1-5, 14. [10] Lemerle D, Verbeek B, Coombes N. Losses in grain yield of winter crops from Lolium rigidum competition depend on crop species, cultivar and season. Weed Research, 1995, 35(6): 503-509. [11] Liebman M, Davis A S. Integration of soil, crop and weed management in low-external-input farming systems. Weed Research, 2000, 40(1): 27-48. [12] Tang H Y. Study on distribution of farmland weed species. Shanghai Agricultural Science and Technology, 1983, (5): 28-30. [13] Zhang J L, Mu X Q, Li X L, et al . Preliminary study on the allelopathy of associated weeds with wheat. Chinese Agricultural Science Bulletin, 2006, 22(7): 458-461. [14] Zhou B. Effect of extract from three clonal companion weeds on rice seed germination and seedling growth. Acta Agriculturae Boreali-occidentalis Sinica, 2012, 20(8): 71-76. [15] Tominaga T, Yamasue Y. Crop-associated Weeds[M]. Berlin: Springer Netherlands, 2004: 47-63. [16] Yang B J, Huang G Q, Xu N, et al . Effects of different multiple cropping systems on paddy field weed community under long term paddy- upland rotation. Chinese Journal of Applied Ecology, 2013, 24(9): 2533-2538. [17] Shen X N, Liu X H. Multiple Cropping[M]. Beijing: China Agriculture Press, 1983: 2-3. [18] Liebman M, Dyck E. Crop rotation and intercropping strategies for weed management. Ecological Applications, 1993, 3: 92-122. [19] Qiang S, Shen J M, Zhang C Q, et al . The influence of cropping systems on weed communities in the cotton fields of Jiangsu province. Acta Phytoecoiogica Sinica, 2003, 27(2): 278-282. [20] Zhu W D, Wei S H, Zhang C X. Species composition and vertical distribution of weed seed bank under rice-rape cropping system. Chinese Journal of Oil Crop Science, 2007, 29(3): 313-317. [21] Derksen D A, Lafond G P, Thomas A G, et al . The impact of agronomic practices on weed communities: tillage systems. Weed Science, 1993, 41(3): 409-417. [22] Teasdale J R, Mangum R W, Radhakrishnan J, et al . Weed seedbank dynamics in three organic farming crop rotations. Agronomy Journal, 2004, 96: 1429-1435. [23] Sheaffer C C, Seguin P. Forage legumes for sustainable cropping systems. Journal of Crop Production, 2003, 8(1-2): 187-216. [24] Cheng C P, Pan J F, Wan K Y, et al . Research advances in the effects of rotation on cropland weeds. Chinese Agricultural Science Bulletin, 2013, 29(30): 1-9. [25] Cheng C P, Wan K Y, Tao Y, et al . The effects of fertilization on weed communities and wheat growth in winter wheat ( Triticum aestivum L.) field under different cropping rotations. Ecology and Environmental Sciences, 2013, 22(3): 370-378. [26] Shrestha A, Knezevic S Z, Roy R C, et al . Effect of tillage, cover crop and crop rotation on the composition of weed flora in a sandy soil. Weed Research, 2002, 42: 76-87. [27] Cardina J, Herms C P, Doohan D J. Crop rotation and tillage system effects on weed seedbanks. Weed Science, 2009, 50: 448-460. [28] Su B Y, Chen S B, Li Y G, et al . Intercropping enhances the farmland ecosystem services. Acta Ecologica Sinica, 2013, 33(14): 4505-4514. [29] Shi X P, Luan C, Chen Y Q, et al . Effect of maize intercropping with different crops on weed community dynamics in the fields. Weed Science, 2011, 29(4): 13-19. [30] Xu H. The Study on Allelopathy of Sunflower to Amaranthus retroflexus L[D]. Nanjing: Nanjing Agricultural University, 2005: 19-21. [31] Zhou L H, Huang G Q, He J F. Effects of different cotton cropping patterns on diseases, pests and weeds on upland red soil. Biological Disaster Science, 2013, 36(1):13-17. [32] Xiang H M, Zhang J E, Luo M Z, et al . Effect of intercropping rice with Oenanthe javanica on disease, pests and weeds hazards and yield of rice. Journal of Ecology and Rural Environment, 2013, 29(1): 58-63. [33] Saucke H, Ackermann K. Weed suppression in mixed cropped grain peas and false flax ( Camelina sativa ). Weed Research, 2006, 46: 453-461. [34] Iqbal J, Cheema Z A, An M. Intercropping of field crops in cotton for the management of purple nutsedge ( Cyperus rotundus L.). Plant and Soil, 2007, 300: 163-171. [35] Bilalis D, Papastylianou P, Konstantas A, et al . Weed-suppressive effects of maize-legume intercropping in organic farming. International Journal of Pest Management, 2010, 56: 173-181. [36] Tian X X, Bo C Y, Li L, et al . Effects of different soil tillage systems on weed biodiversity and wheat yield in winter wheat ( Triticum aestivum L.) field. Acta Ecologica Sinica, 2011, 31(10): 2768-2775. [37] Xin C Y, Guo Q Y, Wei Y H, et al . Effect on soil moisture, nutrient and weed control in arid farmland by shallow tillage. Scientia Agricultura Sinica, 2006, 39(8): 1697-1702. [38] Buhler D D, Stoltenberg D E, Becker R L, et al . Perennial weed populations after 14 years of variable tillage and cropping practices. Weed Science, 1994, 42(2): 205-209. [39] Ma Z Q, Jiang Z L, Liu Y X, et al . Study on weed occurrence and control in conservational tillage for spring maize in Weibei dry plateau. Agricultural Research in the Arid Areas, 2009, 27(5): 76-82. [40] Lafond G, McConkey B G, Stumborg M. Conservation tillage models for small-scale farming: Linking the Canadian experience to the small farms of Inner Mongolia Autonomous Region in China. Soil and Tillage Research, 2009, 104: 150-155. [41] Teasdale J R. Reduced-herbicide weed management systems for no-tillage corn ( Zea mays ) in a hairy vetch ( Vicia villosa ) cover crop. Weed Technology, 1993, 7: 879-883. [42] Moore M J, Gillespie T J, Swanton C J. Effect of cover crop mulches on weed emergence, weed biomass, and soybean ( Glycine max ) development. Weed Technology, 1994, 8(3): 512-518. [43] Dai X Q, Ouyang Z, Li Y S. Weed density and its biomass in wheat field under effects of different tillage and fertilization modes. Chinese Journal of Ecology, 2011, 30(2): 234-240. [44] Blackshaw R E, Molnar L J, Larney F J. Fertilizer, manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Protection, 2005, 24(11): 971-980. [45] Hyvönen T, Salonen J. Weed species diversity and community composition in cropping practices at two intensity levels-a six-year experiment. Plant Ecology, 2002, 159: 73-81. [46] Weaver S E, Tan C S, Brain P. Effect of temperature and soil moisture on time of emergence of tomatoes and four weed species. Canadian Journal of Plant Science, 1988, 68: 877-886. [47] Zhu W D, He Y H, Yang J, et al . The influence of weed control effects on light penetration rate, nutrition and water in rape fields. Acta Phytophylacica Sinica, 2008, 35(6): 557-562. [48] Li J K, Zhu J Q, Chen L, et al . Relationship between the weed and soil moisture in rape field. Journal of Huazhong Agricultural University, 2002, 21(3): 217-220. [49] Khalak A, Kumaraswamy A S. Weed bio-mass in relation to irrigation and mulching, and economics of mulching potato crop under conditions of acute water scarcity. Journal of the Indian Potato Association, 1993, 20: 185-189. [50] Li Z Q, Yin L C, Zhou W J, et al . Influence of different agricultural practices on weed community composition of late rice in redlish rice-cropping ecosystems. Research of Agricultural Modernization, 2008, 29(2): 239-241. [51] Zhang G C, Li J X, Chen X H. The main biological characteristics of Alternanthera philoxeroides . Weed Science, 1993, 2: 10-12. [52] Li R H, Qiang S, Qiu D S, et al . Effects of long-term different fertilization regimes on the diversity of weed communities in oilseed rape fields under rice-oilseed rape cropping system. Biodiversity Science, 2008, 16(2): 118-125. [53] Yin L, Cai Z, Zhong W. Changes in weed community diversity of maize crops due to long-term fertilization. Crop Protection, 2006, 25: 910-914. [54] Gu Q Z, Yang X Y, Sun B H, et al . Weed biodiversity in winter wheat field of loess soil under different fertilization regime. Chinese Journal of Applied Ecology, 2007, 18(5): 1040-1044. [55] Chen C P, Cui B H, Tang L L, et al . Effects of different long-term fertilization modes on weed community and early rice yield. Chinese Journal of Ecology, 2013, 32(11): 2944-2952. [56] Feng W, Pan G X, Qiang S, et al . Influence of long-term fertilization on soil seed bank diversity of a paddy soil under rice/rape rotation. Biodiversity Science, 2006, 14(6): 461-469. [57] Wan K Y, Pan J F, Li R H, et al . Influence of long-term different fertilization on soil weed seed bank diversity of a dry land under winter wheat-soybean rotation. Ecology and Environmental Sciences, 2010, 19(4): 836-842. [58] Jiang M, Shen M X, Shen X P, et al . Effect of long-term fertilization pattern on weed community diversity in wheat field. Acta Ecologica Sinica, 2014, 34(7): 1746-1756. [59] Zhu W D, Wei F X. Effect of fertilizer application on the occurrence and damage of weed in wheat field. Acta Phytophylacica Sinica, 1998, 25(4): 364-368. [60] Lou Q F, Zhang D Y. Influence of nitrogen on competition between three weed species and bird rape. Journal of Nanjing Agricultural University, 2000, 23(1): 23-26. [61] Andersson T N, Milberg P. Weed flora and the relative importance of site, crop, crop rotation, and nitrogen. Weed Science, 1998, 46: 30-38. [62] Swanton C J, Shrestha A, Roy R C, et al . Effect of tillage systems, N, and cover crop on the composition of weed flora. Weed Science, 1999, 47: 454-461. [63] Huel D G, Hucl P. Genotypic variation for competitive ability in spring wheat. Plant Breeding, 1996, 115: 325-329. [64] Lemerle D, Gill G S, Murphy C E, et al . Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Crop and Pasture Science, 2001, 52: 527-548. [65] Christensen S. Weed suppression ability of spring barley varieties. Weed Research, 1995, 35: 241-247. [66] Seavers G P, Wright K J. Crop canopy development and structure influence weed suppression. Weed Research, 1999, 39: 319-328. [67] Pester T A, Burnside O C, Orf J H. Increasing crop competitiveness to weeds through crop breeding. Journal of Crop Production, 1999, 2: 31-58. [68] Mason H E, Navabi A, Frick B L, et al . The weed-competitive ability of Canada western red spring wheat cultivars grown under organic management. Crop Science, 2007, 47: 1167-1176. [69] Didon U M E. Variation between barley cultivars in early response to weed competition. Journal of Agronomy and Crop Science, 2002, 18: 176-184. [70] Didon U M E, Boström U. Growth and development of six barley ( Hordeum vulgare ssp. vulgare L.) cultivars in response to a model weed ( Sinapis alba L.). Journal of Agronomy and Crop Science, 2003, 189: 409-417. [71] Murphy K M, Dawson J C, Jones S S. Relationship among phenotypic growth traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field Crops Research, 2008, 105: 107-115. [72] Chen W, Xue L. Root interactions: competition and facilitation. Acta Ecologica Sinica, 2004, 24(6):1243-1251. [73] Kwon S L, Smith R J, Talbert R E. Interference and duration of red rice ( Oryza sativa L.) in rice ( Oryza sativa ). Weed Science, 1991, 39: 363-368. [74] Duke S O. Allelopathy: current status of research and future of the discipline: a commentary. Allelopathy Journal, 2010, 25: 17-30. [75] Inderjit. Experimental complexities in evaluating the allelopathic activities in laboratory bioassays: A case study. Soil Biology & Biochemistry, 2006, 38: 256-262. [76] Ma Y Q, Liu D L, Lovett J V. Weed allelopathy and its utilization in biological control of weeds. Chinese Journal of Ecology, 1991, 10(5): 46-49. [77] Dilday R H, Mattice J D, Moldenhauer K A. Rice Allelopathy[M]. Taegu, Korea: Kyungpook National University Press, 2000: 15-26. [78] Hu F, Kong C H, Xu X H, et al . Weed-suppressing effect and its mechanism of allelopathic rice accessions. Scientia Agricultura Sinica, 2004, 37(8): 1160-1165. [79] Wu C X, Liu S J, Zhao G Q. Isolation and identification of the potential allelochemicals in the aqueous extract of yellow sweet clover ( Melilotus officinalis ). Acta Prataculturae Sinica, 2014, 23(5): 184-192. [80] Liu C, Chen X D, Wu M, et al . Allelopathic effects of Phragmites communis leaves on the growth and physiobiochemical characteristics of Solidago canadensis . Acta Prataculturae Sinica, 2014, 23(3): 182-190. [81] Baziramakenga R, Leroux G D, Simard R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology, 1995, 21: 1271-1285. [82] Lin W X, He H Q, Guo Y C, et al . Rice allelopathy and its physiobiochemical characteristics. Chinese Journal of Applied Ecology, 2001, 12(6): 871-875. [83] Zheng J Y, Yue Z H, Tian Y, et al . Allelopathy of Equisetum arvense extract on seed germination and seedling growth of wheat. Acta Prataculturae Sinica, 2014, 23(3): 191-196. [84] Li Y R. The biochemical interaction of plant. Soils, 1993, 25(5): 248-251. [85] Mohler C L. Ecological Management of Agricultural Weeds[M]. UK, Cambridge: Cambridge University Press, 2001: 444-493. [86] Albrecht H, Auerswald K. Arable weed seedbanks and their relation to soil properties. Aspects of Applied Biology, 2003, 69: 11-20. [87] Dieleman J A, Mortensen D A, Buhler D D, et al . Identifying associations among site properties and weed species abundance. I. Multivariate analysis. Weed Science, 2000, 48: 567-575. [88] Zhang J, Hamill A S, Gardiner I O, et al . Dependence of weed flora on the active soil seedbank. Weed Research, 1998, 38: 143-152. [89] Ball D A, Miller S D. A comparison of techniques for estimation of arable soil seedbanks and their relationship to weed flora. Weed Research, 1989, 29: 365-373. [90] Wei S H, Qiang S, Ma B, et al . Soil weed seedbank and integrated weed management. Soils, 2005, 37(2): 121-128. [91] Wang K J, Qiang S. Quantitative analysis of weed community in wheat field in northern areas of Jiangsu Province. Jiangsu Journal of Agricultural Sciences, 2002, 18: 147-153. [92] Feldman S R, Torres C A, Lewis P. The effect of different tillage systems on the composition of the seedbank. Weed Research, 1997, 37: 71-76. [93] Niu Y Z, Li F B, Liu J G, et al . The effects of straw returning and different tillage on weed seed bank under rice-wheat rotation system. Jiangsu Agricultural Sciences, 2008, (1): 79-81. [94] Wei S H, Qiang S, Ma B, et al . Effects of different crop rotation system on the characteristics of soil weed seedbank. Chinese Journal of Ecology, 2005, 24(4): 385-389. [95] Huang M L, Liang Y L, Zhou M J, et al . The soil seed bank characteristics in cropland under different conservation tillage and fertilization regimes in Loess Hill and Gully Region. Acta Ecologica Sinica, 2009, 29(7): 3987-3994. [96] Wu J L, Zhou H C. Seed bank of perennial weeds in paddy fields. Chinese Journal of Rice Science, 2006, 20(1): 89-96. [97] Guo Y Y, Wang J G, Sun Q Z, et al . Characteristics of soil weed seed bank of alfalfa fields among different fore crops. Pratacultural Science, 2012, 29(6): 973-977. [98] Wang X R, Chen R M, Tang W P, et al . Monthly dynamic variation of soil seed bank in water-level-fluctuating zone of three gorges reservoir at the beginning after charging water. Acta Ecologica Sinica, 2012, 32(10): 3107-3117. [99] Wang G D, Lv X G, Jiang M, et al . Characteristics of the soil seed banks and relationships with the vegetation in restored wet-lands in Sanjiang Plain, northeast of China. Chinese Journal of Plant Ecology, 2012, 36(8): 763-773. [100] Zhao Y X, Yang H M. Effects of no-tillage and stubble retention on weed population and community characteristics under a rotation system in the Loess Plateau. Proceedings of the 4th International Symposium for Farming Systems Design[C].Lanzhou: Gansu Science and Technology Press, 2013: 263-264. [101] Hyvönen T, Salonen J. Weed species diversity and community composition in cropping practices at two intensity levels—a six-year experiment. Plant Ecology, 2002, 154: 73-81. [102] Belz R G. Allelopathy in crop/weed interactions-an update. Pest Management Science, 2007, 63: 308-326. [103] Olofsdotter M, Jensen L B, Courtois B. Improving crop competitive ability using allelopathy-an example from rice. Plant Breeding, 2002, 121: 1-9. [104] Chen X, Wang Z Q, Tang J J. The ecological functions of weed biodiversity in agro-ecosystem. Chinese Journal of Ecology, 2000, 19(4): 50-52. [105] Guo S L, Li Y H. The basic characteristics of weeds and their important role in enriching biodiversity in cultivated environments. Natural Recourses, 1996, (3): 48-52. [106] Wu C H, Chen X, Wang Z Q. Lead absorption by weeds from lead-polluted soil. Chinese Journal of Applied Ecology, 2004, 15(8): 1451-1454. [1] 王立祥, 李军. 农作学[M]. 北京: 科学出版社, 2003: 278-279. [2] 宋冬明, 马殿荣, 杨庆, 等. 杂草稻对栽培粳稻产量和品质及群体微生态环境的影响. 作物学报, 2009, 35: 914-920. [3] 黄高宝, 柴强. 植物化感作用表现形式及其开发应用研究. 中国生态农业学报, 2003, 11(3): 172-174. [4] 涂鹤龄. 我国农田杂草研究和防治进展. 农药, 2001, 40(3): 1-3. [5] 张朝贤, 胡祥恩, 钱益新. 国外除草剂应用趋势及我国杂草科学研究现状和发展方向. 植物保护学报, 1997, 24(3): 278-282. [6] 张泽溥. 我国农田杂草治理技术的发展. 植物保护, 2004, 30(2): 28-33. [7] 陈欣, 唐建军, 赵惠明, 等. 农业生态系统中杂草资源的可持续利用. 自然资源学报, 2003, 18(3): 340-346. [8] 郭予元. 我国农作物病虫害生态调控实例分析. 植物保护, 2006, (2): 1-4. [9] 武兰芳, 陈阜, 欧阳竹. 种植制度演变与研究进展. 耕作与栽培, 2002, (3): 1-5, 14. [12] 唐洪元. 农田主要杂草种类分布初探. 上海农业科技, 1983, (5): 28-30. [13] 张军林, 慕小倩, 李晓玲, 等. 伴生杂草对小麦化感作用的研究初报. 中国农学通报, 2006, 22(7): 458-461. [14] 周兵. 3种克隆型伴生杂草提取物对水稻种子萌发和幼苗生长的影响. 西北农业学报, 2012, 20(8): 71-76. [16] 杨滨娟, 黄国勤, 徐宁, 等. 长期水旱轮作条件下不同复种方式对稻田杂草群落的影响. 应用生态学报, 2013, 24(9): 2533-2538. [17] 沈学年, 刘巽浩. 多熟种植[M]. 北京: 中国农业出版社, 1983: 2-3. [19] 强胜, 沈俊明, 张成群, 等. 种植制度对江苏省棉田杂草群落影响的研究. 植物生态学报, 2003, 27(2): 278-282. [20] 朱文达, 魏守辉, 张朝贤. 稻油轮作田杂草种子库组成及其垂直分布特征. 中国油料作物学报, 2007, 29(3): 313-317. [24] 程传鹏, 潘俊峰, 万开元, 等. 轮作对农田杂草的影响研究进展. 中国农学通报, 2013, 29(30): 1-9. [25] 程传鹏, 万开元, 陶勇, 等. 不同轮作制度下施肥对冬小麦田间杂草群落及小麦生长的影响. 生态环境学报, 2013, 22(3): 370-378. [28] 苏本营, 陈圣宾, 李永庚, 等. 间套作种植提升农田生态系统服务功能. 生态学报, 2013, 33(14): 4505-4514. [29] 史学朋, 栾琛, 陈源泉, 等. 玉米与不同植物间作对田间杂草群落动态变化的影响. 杂草科学, 2011, 29(4): 13-19. [30] 徐衡. 向日葵对反枝苋的化感作用研究[D]. 南京: 南京农业大学, 2005: 19-21. [31] 周丽华, 黄国勤, 贺娟芬. 红壤旱地棉田间作种植模式对病、虫、草害的影响. 生物灾害科学, 2013, 36(1):13-17. [32] 向慧敏, 章家恩, 罗明珠, 等. 水稻与水芹间作栽培对水稻病虫草害和产量的影响. 生态与农村环境学报, 2013, 29(1): 58-63. [36] 田欣欣, 薄存瑶, 李丽, 等. 耕作措施对冬小麦田杂草生物多样性及产量的影响. 生态学报, 2011, 31(10): 2768-2775. [37] 辛存岳, 郭青云, 魏有海, 等. 干旱地区农田浅耕对杂草控制及土壤水分,养分的影响. 中国农业科学, 2006, 39(8): 1697-1702. [39] 马志卿, 江志利, 刘月仙, 等. 渭北旱塬保护性耕作春玉米田杂草发生及防除. 干旱地区农业研究, 2009, 27(5): 76-82. [43] 戴晓琴, 欧阳竹, 李运生. 耕作措施和施肥方式对麦田杂草密度和生物量的影响. 生态学杂志, 2011, 30(2): 234-240. [47] 朱文达, 何燕红, 杨峻, 等. 杂草防除对油菜田间透光率、养分和水分的影响. 植物保护学报, 2008, 35(6): 557-562. [48] 李俊凯, 朱建强, 程玲, 等. 油菜田杂草发生特点与田间土壤水分的关系研究. 华中农业大学学报, 2002, 21(3): 217-220. [50] 李照全, 尹力初, 周卫军, 等. 农田管理措施对红壤稻田系统杂草种群结构的影响. 农业现代化研究, 2008, 29(2): 239-241. [51] 张格成, 李继祥, 陈秀华. 空心莲子草主要生物学特性研究. 杂草科学, 1993, 2: 10-12. [52] 李儒海, 强胜, 邱多生, 等. 长期不同施肥方式对稻油两熟制油菜田杂草群落多样性的影响. 生物多样性, 2008, 16(2): 118-125. [54] 古巧珍, 杨学云, 孙本华, 等. 不同施肥条件下黄土麦地杂草生物多样性. 应用生态学报, 2007, 18(5): 1040-1044. [55] 程传鹏, 崔佰慧, 汤雷雷, 等. 长期不同施肥模式对杂草群落及早稻产量的影响. 生态学杂志, 2013, 32(11): 2944-2952. [56] 冯伟, 潘根兴, 强胜, 等. 长期不同施肥方式对稻油轮作田土壤杂草种子库多样性的影响. 生物多样性, 2006, 14(6): 461-469. [57] 万开元, 潘俊峰, 李儒海, 等. 长期施肥对旱地土壤杂草种子库生物多样性影响的研究. 生态环境学报, 2010, 19(4): 836-842. [58] 蒋敏, 沈明星, 沈新平, 等. 长期不同施肥方式对麦田杂草群落的影响. 生态学报, 2014, 34(7): 1746-1756. [59] 朱文达, 魏福香. 施肥对麦田杂草发生, 生长及危害的影响. 植物保护学报, 1998, 25(4): 364-368. [60] 娄群峰, 张敦阳. 氮肥用量对三种杂草与油菜间竞争关系的影响. 南京农业大学学报, 2000, 23(1): 23-26. [72] 陈伟, 薛立. 根系间的相互作用-竞争与互利. 生态学报, 2004, 24(6):1243-1251. [76] 马永清, 刘德立, Lovett J V. 杂草间的他感作用及其在杂草生防中的应用. 生态学杂志, 1991, 10(5): 46-49. [78] 胡飞, 孔垂华, 徐效华, 等. 水稻化感材料的抑草作用及其机制. 中国农业科学, 2004, 37(8): 1160-1165. [79] 邬彩霞, 刘苏娇, 赵国琦. 黄花草木樨水浸提液中潜在化感物质的分离, 鉴定. 草业学报, 2014, 23(5): 184-192. [80] 刘成, 陈晓德, 吴明, 等. 芦苇叶片化感作用对加拿大一枝黄花生长及生理生化特性的影响. 草业学报, 2014, 182-190. [82] 林文雄, 何华勤, 郭玉春, 等. 水稻化感作用及其生理生化特性的研究. 应用生态学报, 2001, 12(6): 871-875. [83] 郑景瑶, 岳中辉, 田宇, 等. 问荆水浸液对小麦种子萌发及幼苗生长的化感效应初探. 草业学报, 2014, 23(3): 191-196. [84] 李杨瑞. 植物的生化互作现象. 土壤, 1993, 25(5): 248-251. [90] 魏守辉, 强胜, 马波, 等. 土壤杂草种子库与杂草综合管理. 土壤, 2005, 37(2): 121-128. [91] 王开金, 强胜. 江苏省长江以北地区麦田杂草群落的定量分析. 江苏农业学报, 2002, 18(3): 147-153. [93] 牛永志, 李凤博, 柳建国, 等. 秸秆还田和不同耕作方式对稻麦轮作田土壤杂草种子库的影响. 江苏农业科学, 2008, (1): 79-81. [94] 魏守辉, 强胜, 马波, 等. 不同作物轮作制度对土壤杂草种子库特征的影响. 生态学杂志, 2005, 24(4): 385-389. [95] 黄茂林, 梁银丽, 周茂娟, 等. 陕北黄土丘陵沟壑区水土保持耕作及施肥下农田土壤种子库特征. 生态学报, 2009, 29(7): 3987-3994. [96] 吴竞仑, 周恒昌. 稻田土壤多年生杂草种子库研究. 中国水稻科学, 2006, 20(1): 89-96. [97] 郭艳艳, 王建光, 孙启忠, 等. 不同前茬作物下苜蓿地土壤杂草种子库的特征. 草业科学, 2012, 29(6): 973-977. [98] 王晓荣, 程瑞梅, 唐万鹏, 等. 三峡库区消落带水淹初期土壤种子库月份动态. 生态学报, 2012, 32(10): 3107-3117. [99] 王国栋, 吕宪国, 姜明, 等. 三江平原恢复湿地土壤种子库特征及其与植被的关系. 植物生态学报, 2012, 36(8): 763-773. [104] 陈欣, 王兆骞, 唐建军. 农业生态系统杂草多样性保持的生态学功能. 生态学杂志, 2000, 19(4): 50-52. [105] 郭水良, 李扬汉. 杂草的基本特点及其在丰富栽培地生物多样性中的作用. 自然资源, 1996, (3): 48-52. [106] 吴春华, 陈欣, 王兆骞. 铅污染土壤中杂草对铅的吸收. 应用生态学报, 2004, 15(8): 1451-1454. || |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||