[1] Houghton J T, Ding Y, Griggs D J, et al . Climate change 2001: the scientific basis[R]. Cambridge: Cambridge University Press, 2001. [2] Centritto M, Helen S, Lee J, et al . Interactive effects of elevated [CO 2 ] and drought on cherry ( Prunus avium ) seedlings I. Growth, whole-plant water use efficiency and water loss. New Phytologist, 1999, 141: 129-140. [3] Bhattacharya N, Hileman D, Ghosh P, et al . Interaction of enriched CO 2 and water stress on the physiology of and biomass production in sweet potato grown in open-top chambers. Plant Cell Environment, 2006, 13: 933-940. [4] Ge Z M, Zhou X, Kellomäki S, et al . Responses of leaf photosynthesis, pigments and chlorophyll fluorescence within canopy position in a boreal grass ( Phalaris arundinacea L.) to elevated temperature and CO 2 under varying water regimes. Photosynthetica, 2011, 49: 172-184. [5] Morgan J A, LeCain D R, Pendall E, et al . C 4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 2011, 476: 202-205. [6] Kinmonth S H, Kim S H. Carbon gain, allocation and storage in rhizomes in response to elevated atmospheric carbon dioxide and nutrient supply in a perennial C 3 grass, Phalaris arundinacea . Functional Plant Biology, 2011, 38: 797-807. [7] Jackson R, Luo Y, Cardon Z, et al . Photosynthesis, growth and density for the dominant species in a CO 2 -enriched grassland. Journal of Biogeography, 1995, 22: 1225-1229. [8] Cheng W, Sakai H, Yagi K, et al . Interactions of elevated [CO 2 ] and night temperature on rice growth and yield. Agricultural and Forest Meteorology, 2009, 149: 51-58. [9] Mishra R, Abdin M, Uprety D. Interactive effects of elevated CO 2 and moisture stress on the photosynthesis, water relation and growth of Brassica species. Journal of Agronomy and Crop Science, 1999, 182: 223-230. [10] Kakani V, Reddy K R. Temperature response of C 4 species big bluestem ( Andropogon gerardii ) is modified by growing carbon dioxide concentration. Environmental and Experimental Botany, 2007, 61: 281-290. [11] Ellsworth D S, Thomas R, Crous K Y, et al . Elevated CO 2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke FACE. Global Change Biology, 2012, 18: 223-242. [12] Komatsu M, Tobita H, Watanabe M, et al . Photosynthetic downregulation in leaves of the Japanese white birch grown under elevated CO 2 concentration does not change their temperature-dependent susceptibility to photoinhibition. Physiologia Plantarum, 2012, 147: 159-168. [13] Drake B G, Gonzàlez M A, Long S P. More efficient plants: a consequence of rising atmospheric CO 2 . Annual Review of Plant Biology, 1997, 48: 609-639. [14] Wang H, Zhou G S, Jiang Y L, et al . Interactive effects of changing precipitation and elevated CO 2 concentration on photosynthetic parameters of Stipa breviflora . Chinese Journal of Plant Ecology, 2012, 36(7): 597-606. [15] Wand S J, Midgley G, Jones M H, et al . Responses of wild C 4 and C 3 grass (Poaceae) species to elevated atmospheric CO 2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology, 1999, 5: 723-741. [16] Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO 2 , nutrients and water: a quantitative review. Australian Journal of plant physiology, 2000, 27: 595-607. [17] Poorter H, Niklas K J, Reich P B, et al . Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 2012, 193: 30-50. [18] Li X Z, Liu X D, Ma Z G. Analysis on the drought characteristics in the main arid regions in the world since recent hundred-odd years. Arid Zone Research, 2004, 21(2): 97-103. [19] Ainsworth E A, Rogers A. The response of photosynthesis and stomatal conductance to rising [CO 2 ]: mechanisms and environmental interactions. Plant Cell Environment, 2007, 30: 258-270. [20] Rao L E, Allen E B. Combined effects of precipitation and nitrogen deposition on native and invasive winter annual production in California deserts. Oecologia, 2010, 162: 1035-1046. [21] Flexas J, Medrano H. Drought-inhibition of photosynthesis in C 3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany, 2002, 89: 183-189. [22] Báez S, Collins S L, Pockman W T, et al . Effects of experimental rainfall manipulations on Chihuahuan Desert grassland and shrubland plant communities. Oecologia, 2013, 172: 1117-1127. [23] Poorter H, Perez M. The growth response of plants to elevated CO 2 under non-optimal environmental conditions. Oecologia, 2001, 129: 1-20. [24] Atwell B J, Henery M L, Rogers G S, et al . Canopy development and hydraulic function in Eucalyptus tereticornis grown in drought in CO 2 -enriched atmospheres. Functional Plant Biology, 2007, 34: 1137-1149. [25] Smith S D, Huxman T E, Zitzer S F, et al . Elevated CO 2 increases productivity and invasive species success in an arid ecosystem. Nature, 2000, 408: 79-82. [26] Erice G, Irigoyen J J, Sánchez M, et al . Effect of drought, elevated CO 2 and temperature on accumulation of N and vegetative storage proteins (VSP) in taproot of nodulated alfalfa before and after cutting. Plant Science, 2007, 172: 903-912. [27] Xu Z, Zhou G, Wang Y. Combined effects of elevated CO 2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia . Plant and Soil, 2007, 301: 87-97. [28] Wang Y, Zhou G, Wang Y. Modeling responses of the meadow steppe dominated by Leymus chinensis to climate change. Climatic Change, 2007, 82: 437-452. [29] Huang Z H, Zhu J M, Mu X J, et al . Advances on the mechanism of low sexual reproductivity of Leymus chinensis . Grassland of China, 2002, 24(6): 55-60. [30] Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO 2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2 . New Phytologist, 2005, 165: 351-372. [31] Ziska L, Sicher R, George K, et al . Rising atmospheric carbon dioxide and potential impacts on the growth and toxicity of poison ivy ( Toxicodendron radicans ). Weed Science, 2007, 55: 288-292. [32] Xu Z, Shimizu H, Yagasaki Y, et al . Interactive effects of elevated CO 2 , drought, and warming on plants. Journal of Plant Growth Regulation, 2013, 32: 692-707. [33] Tolley L C, Strain B. Effects of CO 2 enrichment and water stress on growth of Liquidambar styraciflua and Pinus taeda seedlings. Canadian Journal of Botany, 1984, 62: 2135-2139. [34] Ottman M, Kimball B, Pinter P, et al . Elevated CO 2 increases sorghum biomass under drought conditions. New Phytologist, 2001, 150: 261-273. [35] Xu Z Z, Zhou G S. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis . Plant and Soil, 2005, 269: 131-139. [36] Luo Y Z, Li G. The effect of water stress on growth and biomass of Medicago sativa cv. Xinjiangdaye. Acta Prataculturae Sinica, 2014, 4: 213-219. [37] Fay P A, Polley H W, Jin V L, et al . Productivity of well-watered Panicum virgatum does not increase with CO 2 enrichment. Journal of Plant Ecology, 2012, 5: 366-375. [38] Niu S, Xing X, Zhang Z, et al . Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Global Change Biology, 2011, 17: 1073-1082. [39] Morgan J, Newton P, Nösberger J, et al . The influence of rising atmospheric CO 2 on grassland ecosystems. Proceedings of the XIX International Grasslands Congress, 2001, 200(1): 973-980. [14] 王慧, 周广胜, 蒋延玲, 等. 降水与 CO 2 浓度协同作用对短花针茅光合特性的影响. 植物生态学报, 2012, 36(7): 597-606. [18] 李新周, 刘晓东, 马柱国, 等. 近百年来全球主要干旱区的干旱化特征分析. 干旱区研究, 2004, 21(2): 97-103. [29] 黄泽豪, 朱锦懋, 母锡金, 等. 羊草有性繁殖力低的成因研究进展. 中国草地, 2002, 24(6): 55-60. [36] 罗永忠, 李广. 土壤水分胁迫对新疆大叶苜蓿的生长及生物量的影响. 草业学报, 2014, 23(4): 213-219. |