[1] Johnson P G, Riordan T P, Johnson-Cicalese J. Low-mowing tolerance in buffalograss. Crop Science, 2000, 40(5): 1339-1343. [2] Sun G, Stewart C N J, Xiao P, et al . MicroRNA expression analysis in the cellulosic biofuel crop switchgrass ( Panicum virgatum ) under abiotic stress. Plos One, 2012, 7(3): e32017. [3] Liu J L, Zhu W B, Xie G H, et al . The development of Panicum virgatum as an energy crop. Acta Prataculturae Sinica, 2009, 18(3): 232-240. [4] Calles Torrez V, Johnson P J, Boe A. Infestation rates and tiller morphology effects by the switchgrass moth on six cultivars of switchgrass. BioEnergy Research, 2013, 6(2): 808-812. [5] Lemus R, Brummer E C, Moore K J, et al . Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass and Bioenergy, 2002, 23(6): 433-442. [6] Gunter L E, Tuskan G A, Wullschleger S D. Diversity among populations of switchgrass based on RAPD markers. Crop Science, 1996, 36(4): 1017-1022. [7] Xu B, Sathitsuksanoh N, Tang Y, et al . Overexpression of AtLOV 1 in switchgrass alters plant architecture, lignin content, and flowering time. Plos one, 2012, 7(12): e47399. [8] Berti M T, Johnson B L. Switchgrass establishment as affected by seeding depth and soil type. Industrial Crops and Products, 2013, 41: 289-293. doi:10.1016/j.indcrop.2012.04.023 [9] Foster J L, Guretzky J A, Huo C, et al . Effects of row spacing, seeding rate, and planting date on establishment of switchgrass. Crop Science, 2012, 53(1): 309-314. [10] Yang J, Worley E, Wang M, et al . Natural variation for nutrient use and remobilization efficiencies in switchgrass. BioEnergy Research, 2009, 2(4): 257-266. [11] Parrish D J, Fike J H. Selecting, establishing, and managing switchgrass ( Panicum virgatum ) for biofuels. Methods in Molecular Biology, 2009, 581: 27-40. doi:10.1007/978-1-60761-214-8_2. [12] Missaoui A M, Fasoula V A, Bouton J H. The effect of low plant density on response to selection for biomass production in switchgrass. Euphytica, 2005, 142(1-2): 1-12. [13] Burris Jason N, Mann David G J, Joyce Blake L, et al . An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass ( Panicum virgatum L.). BioEnergy Research, 2009, 2(4): 267-274. [14] Ghimire S R, Charlton N D, Craven K D. The mycorrhizal fungus, Sebacina vermifera , enhances seed germination and biomass production in switchgrass ( Panicum virgatum L). BioEnergy Research, 2009, 2(1-2): 51-58. [15] Samuel R, Pu Y, Raman B, et al . Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Applied Biochemistry and Biotechnology, 2010, 162(1): 62-74. [16] Hong C O, Owens V N, Lee D K, et al . Switchgrass, big bluestem, and indiangrass monocultures and their two- and three-way mixtures for bioenergy in the northern great plains. BioEnergy Research, 2012, 6(1): 229-239. [17] Lewandowski I, Scurlock J M O, Lindvall E, et al . The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 2003, 25(4): 335-361. [18] Hu Z H, Wang Y C, Wen Z Y. Alkali (NaOH) pretreatment of switchgrass by radio frequency-based dielectric heating. Applied Biochemistry and Biotechnology, 2008, 148(1-3): 71-81. [19] Liu G D. Forage Floras of Hainan[M]. Beijing: Chinese Agricultural Press, 2000. [20] Huo W, Zhuang C H, Cao Y, et al . Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp. enhance copper tolerance of guinea grass ( Panicum maximum ) in hydroponic culture. Acta Physiologiae Plantarum, 2012, 34(1): 139-150. [21] Xu K. Effects of light and temperature on the seed germination of Panicum maximum Jacq. and Paspalum plicatulum . Seed, 1989, (3): 43-47. [22] Du F, Chen X, Yang C H, et al . Effect of NaCl stress on seed germination and seedling growth of different switchgrass materials. Acta Agrestia Sinica, 2011, 19(6): 1018-1024. [23] Su Y, Liu J, Lu Z, et al . Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. Environmental and Experimental Botany, 2014, 97: 40-48. doi:10.1016/j.envexpbot.2013.10.001 [24] Ren A Z, Gao Y B. Effects of single and combinative pollutions of lead, cadmium, chromium on the germination of Brassica chinensis L. Chinese Journal of Ecology, 2000, 19(1): 19-22. [25] Wang K R, Gong H Q. Effects of cadmium exposures in different stages on plant growth, Cd uptake and Cd concentrations in brown rice of a hybrid and conventional rice variety. Ecology and Environment, 2006, 15(6): 1197-1203. [26] Lux A, Martinka M, Vaculik M, et al . Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 2011, 62(1): 21-37. [27] Xiong J, Lu H, Lu K, et al . Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta, 2009, 230(4): 599-610. [28] Zhang Z, Liu C, Wang X, et al . Cadmium-induced alterations in morpho-physiology of two peanut cultivars differing in cadmium accumulation. Acta Physiologiae Plantarum, 2013, 35(7): 2105-2112. [29] Shi G R. Screening of Heavy Metal-tolerant Energy Plants and Their Adaptability to Metal Stress[D]. Nanjing: Nanjing Agricultural University, 2009. [30] Malamy J E. Intrinsic and environmental response pathways that regulate root system architecture. Plant, Cell & Environment, 2005, 28(1): 67-77. [31] Ding Y, Feng R, Wang R, et al . A dual effect of Se on Cd toxicity: evidence from plant growth, root morphology and responses of the antioxidative systems of paddy rice. Plant and Soil, 2014, 375(1-2): 289-301. [32] Chen W, Zhang M M, Song Y Y, et al . Impacts of heavy metals on the fluorescence characteristics and root morphology of 2 turfgrass species. Acta Prataculturae Sinica, 2014, 23(3): 333-342. [33] Huang B, Xin J, Dai H, et al . Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation. Environmental Science and Pollution Research, 2014: 1-9. doi:10.1007/s11356-014-3405-7 [34] Potters G, Pasternak T P, Guisez Y, et al . Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant, Cell & Environment, 2009, 32(2): 158-169. [35] Berkelaar E, Hale B. The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars. Canadian Journal of Botany, 2000, 78(3): 381-387. [36] Li T, Yang X, Lu L, et al . Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. Journal of Hazardous Materials, 2009, 169(1-3): 734-741. [3] 刘吉利, 朱万斌, 谢光辉, 等. 能源作物柳枝稷研究进展. 草业学报, 2009, 18(3): 232-240. [19] 刘国道. 海南饲用植物志[M]. 北京:中国农业大学出版社, 2000. [21] 许堃. 光温对坚尼草、棕籽雀稗种子发芽的影响. 种子, 1989, (3): 43-47. [22] 杜菲, 陈新, 杨春华, 等. NaCl胁迫对不同柳枝稷材料种子萌发与幼苗生长的影响. 草地学报, 2011, 19(6): 1018-1024. [24] 任安芝, 高玉葆. 铅、镉、铬单一和复合污染对青菜种子萌发的生物学效应. 生态学杂志, 2000, 19(1): 19-22. [25] 王凯荣, 龚惠群. 不同生育期镉胁迫对两种水稻的生长、镉吸收及糙米镉含量的影响. 生态环境, 2006, 15(6): 1197-1203. [29] 史刚荣. 耐重金属胁迫的能源植物筛选及其适应性研究[D]. 南京: 南京农业大学, 2009. [32] 陈伟, 张苗苗, 宋阳阳, 等. 重金属离子对2种草坪草荧光特性及根系形态的影响. 草业学报, 2014, 23(3): 333-342. |