[1] He Q, Liu J X. Advances in fungi disease research on turfgrasses. Pratacultural Science, 2006, 23(4): 95-104. [2] Wen K J, Luo T Q, Zhang L, et al . Control efficacy of 6 fungicides against 3 pathogens of turfgrass disease. Acta prataculturae Sinica, 2013, 22(3): 124. [3] Zhang L, Hu F R, Shen X H, et al . Advances in turfgrass biotechnology and hot research topics. Acta Agriculturae Nucleatae Sinica, 2004, 18(5): 372-375. [4] Zhang C X, Nan Z B, Li C J, et al . Studies progress of fungicide seed treatments on the control of turfgrass diseases. Acta Prataculturae Sinica, 2005, 14(6): 14-22. [5] Guo J F, Pan J S, Wang C, et al . Research on relationships of pathogenesis-related proteins with plant disease resistance and their application in turfgrass disease resistance breeding. Acta Prataculturae Sinica, 2008, 17(6): 156. [6] Godard J, Ziadi S, Monot C, et al . Benzothiadiazole (BTH) induces resistance in cauliflower ( Brassica oleracea var. botrytis ) to downy mildew of crucifers caused by Peronospora parasitica . Crop Protection, 1999, 18(6): 397-405. [7] Colson-Hanks E S, Deverall B J. Effect of 2, 6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to alternaria leaf spot in cotton. Plant Pathology, 2000, 49(2): 171-178. [8] Walters D, Newton A, Lyon G. Induced Resistance for Plant Defence[M]. Oxford: Blackwell Publishing, 2007: 31-81. [9] Suzuki S, He Y, Oyaizu H. Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Current Microbiology, 2003, 47(2): 138-143. [10] Ryu C, Farag M A, Hu C, et al . Bacterial volatiles induce systemic resistance in Arabidopsis . Plant Physiology, 2004, 134(3): 1017-1026. [11] Cortes-Barco A M, Hsiang T, Goodwin P H. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Annals of Applied Biology, 2010, 157(2): 179-189. [12] Cortes-Barco A M, Goodwin P H, Hsiang T. Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana . Plant Pathology, 2010, 59(4): 643-653. [13] Han S H, Lee S J, Moon J H, et al . GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Molecular Plant-Microbe Interactions, 2006, 19(8): 924-930. [14] Smith A G, Croft M T, Moulin M, et al . Plants need their vitamins too. Current Opinion in Plant Biology, 2007, 10(3): 266-275. [15] Kuzniak E, Skl Z S, Odowska M. Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea . Plant Science, 2001, 160(4): 723-731. [16] Conklin P L, Barth C. Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant, Cell & Environment, 2004, 27(8): 959-970. [17] Ghanta S, Bhattacharyya D, Chattopadhyay S. Glutathione signaling acts through NPR1-dependent SA-mediated pathway to mitigate biotic stress. Plant Signal & Behavior, 2011, 6(4): 607-609. [18] Deng Y Y, Ming J, Zhang Z Q, et al . Effect of chitosan on salicylic acid and active oxygen metabolism of navel orange fruit. Scientia Agricultura Sinica, 2010, (04): 812-820. [19] Ren J Z. Grassland Research Methods[M]. Beijing: China Agriculture University Press, 1998: 214-236. [20] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22(5): 867-880. [21] Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 1976, 133(1): 21-25. [22] Kampfenkel K, Van Montagu M, Inze D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry, 1995, 225(1): 165-167. [23] Knörzer O C, Burner J, Boger P. Alterations in the antioxidative system of suspension-cultured soybean cells ( Glycine max ) induced by oxidative stress. Physiologia Plantarum, 1996, 97(2): 388-396. [24] Chen L F, Ye M B, Chen Y X, et al . The relationship between ascorbic acid and resistance of wheat to scab. Acta Phytopathologia Sinica, 1997, 27(2): 113-118. [25] Shi Q H, Zhu Z J, Xu M, et al . Effects of exogenous salicylic acid on activities of some enzymes and antioxidants in cucumber leaves. Acta Horticulturae Sinica, 2004, (05): 666-667. [26] Liu Z L, Zhang S L, Gao F Y. Effect of exogenous salicylic acid on antioxidant enzymes and Ca 2+ density in pear leaves infected by Physalosproa piricola Nose. Chinese Journal of Applied & Environmental Biology, 2011, 17(2): 215-218. [27] Bradley D J, Kjellbom P, Lamb C J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell, 1992, 70(1): 21-30. [28] Desikan R, Reynolds A, Hancock J T, et al . Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochemical Journal, 1998, 330 (1): 115-120. [29] Rogers K R, Albert F, Anderson A J. Lipid peroxidation is a consequence of elicitor activity. Plant Physiology, 1988, 86(2): 547-553. [30] Mhamdi A, Hager J, Chaouch S, et al . Arabidopsis glutathione reductase1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiology, 2010, 153(3): 1144-1160. [31] Foyer C H, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 2005, 17(7): 1866-1875. [32] Mou Z, Fan W, Dong X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 2003, 113(7): 935-944. [33] Vanacker H, Carver T L, Foyer C H. Early H 2 O 2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiology, 2000, 123(4): 1289-1300. [34] Ma H L, Fang Y Y. Induction of plant disease resistance and its application for disease control in creeping bentgrass. Acta Prataculturae Sinica, 2014, 23(5): 312-320. [1] 何秋, 刘建秀. 草坪草真菌病害的研究进展. 草业科学, 2006, 23(4): 95-104. [2] 文克俭,罗天琼,张莉,等. 种杀菌剂对 3 种禾草病害的防治研究. 草业学报, 2013, 22(3): 124. [3] 张磊,胡繁荣,沈希宏,等. 草坪草生物技术进展及研究热点. 核农学报, 2004, 18(5): 372-375. [4] 张成霞,南志标,李春杰,等. 杀菌剂拌种防治草坪草病害的研究进展. 草业学报, 2005, 14(6): 14-22. [5] 郭金芳,潘俊松,王琛,等. 病程相关蛋白与植物抗病性关系的研究及其在草坪草抗病育种中的应用. 草业学报, 2008, 17(6): 156. [18] 邓雨艳,明建,张昭其,等. 壳聚糖诱导脐橙果实抗病性、水杨酸及活性氧代谢变化. 中国农业科学, 2010, (4): 812-820. [19] 任继周. 草业科学研究方法[M]. 北京: 中国农业出版社, 1998: 214-236. [24] 陈利锋,叶茂炳,陈永幸,等. 抗坏血酸与小麦抗赤霉病性的关系. 植物病理学报, 1997, 27(2): 113-118. [25] 史庆华,朱祝军,徐敏,等. 外源水杨酸对黄瓜叶片几种酶活性和抗氧化物质含量的影响. 园艺学报, 2004, (5): 666-667. [26] 刘招龙,张绍铃,高富永. 外源水杨酸对梨叶片感染轮纹病菌后抗氧化酶活性及Ca 2+ 浓度的影响. 应用与环境生物学报, 2011, 17(2): 215-218. [34] 马晖玲, 房媛媛. 植物抗病性及其诱导抗性在匍匐翦股颖病害防治中的应用. 草业学报, 2014, 23(5): 312-320. |