[1] Qin D, Plattner G K, Tignor M, et al . Climate Change 2013: the Physical Science Basis[M]. Cambridge and New York: Cambridge University Press, 2014. [2] Xu X F, Tian H Q, Wan S Q. Climate warming impacts on carbon cycling in terrestrial ecosystems. Journal of Plant Ecology, 2007, 31(2): 175-188. [3] Walther G R, Post E, Convey P, et al . Ecological responses to recent climate change. Nature, 2002, 416(6879): 389-395. [4] Nemani R R. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300 (5625): 1560-1563. [5] Singh B K, Bardgett R D, Smith P, et al . Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 2010, 8(11): 779-790. [6] Grogan P, Chapin III F S. Initial effects of experimental warming on above- and belowground components of net ecosystem CO 2 exchange in Arctic tundra. Oecologia, 2000, 125(4): 512-520. [7] Johnson L C, Shaver G R, Cades D H, et al . Plant carbon-nutrient interactions control CO 2 exchange in Alaskan wet sedge tundra ecosystems. Ecology, 2000, 81(2): 453-469. [8] Melillo J M, Morrisseau S, Steudler P A, et al . Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002, 298(5601): 2173-2176. [9] Rustad L, Campbell J, Marion G, et al . A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001, 126(4): 543-562. [10] Welker J M, Fahnestock J T, Henry G H R, et al . CO 2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming. Global Change Biology, 2004, 10(12): 1981-1995. [11] Huntington T G. Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology, 2006, 319(1): 83-95. [12] Llorens L, Penuelas J, Beier C, et al . Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient. Ecosystems, 2004, 7(6): 613-624. [13] Wan S, Luo Y, Wallace L L. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology, 2002, 8(8): 754-768. [14] Luo Y. Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology, Evolution, and Systematics, 2007, 38(1): 683-712. [15] Wang Y X, Zhao S D, Niu D. Research state of soil carbon cycling in terrestrial ecosystem. Chinese Journal of Ecology, 1999, 18(5): 29-35. [16] Qin Y, Yi S H, Li N J. Advance in studies of carbon cycling on alpine grasslands of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2012, 21(6): 275-285. [17] Post W M, Emanuel W R, Zinke P J, et al . Soil carbon pools and world life zones. Nature, 1982, 298(5870): 156-159. [18] Cox P M, Betts R A, Jones C D, et al . Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809):184-187. [19] Friedlingstein P, Fung I, Bala G, et al . Climate-carbon cycle feedback analysis: results from the C 4 MIP model inter comparison. Journal of Climate, 2006, 19(14): 3337-3353. [20] Oechel W C, Vourlitis G L, Hastings S J, et al . Acclimation of ecosystem CO 2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 2000, 406(6799): 978-981. [21] Luo Y, Wan S, Hui D, et al . Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 2001, 413(6856): 622-625. [22] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440(7081): 165-173. [23] Balser T C, Gutknecht J L M, Liang C. How Will Climate Change Impact Soil Microbial Communities[M]. Berlin: Springer Netherlands, 2010: 373-397. [24] Schimel D S, House J I, Hibbard K A, et al . Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414(6860): 169-172. [25] Raich J W, Potter C S, Bhagawati D. Inter annual variability in global soil respiration, 1980-94. Global Change Biology, 2002, 8(8): 800-812. [26] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464(7288): 579-582. [27] Wang W, Chen W L, Wang S P. Forest soil respiration and its heterotrophic and autotrophic components: global patterns and responses to temperature and precipitation. Soil Biology and Biochemistry, 2010, 42(8): 1236-1244. [28] Bond-Lamberty B, Thomson A. A global database of soil respiration data. Biogeosciences, 2010, 7(6): 1915-1926. [29] Zhou P, Liu G B, Xue S. Review of soil respiration and the impact factors on grassland ecosystem. Acta Prataculturae Sinica, 2009, 18(2): 184-193. [30] Reth S, Graf W, Reichstein M, et al . Sustained stimulation of soil respiration after 10 years of experimental warming. Environmental Research Letters, 2009, 4(2): 24005. [31] Hanson P J, Edwards N T, Garten C T, et al . Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 2000, 48(1): 115-146. [32] Bond-Lamberty B, Wang C, Gower S T. A global relationship between the heterotrophic and autotrophic components of soil respiration. Global Change Biology, 2004, 10(10): 1756-1766. [33] Subke J A, Inglima I, Francesca Cotrufo M. Trends and methodological impacts in soil CO 2 efflux partitioning: a meta analytical review. Global Change Biology, 2006, 12(6): 921-943. [34] Kuzyakov Y, Gavrichkova O. Review: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology, 2010, 16(12): 3386-3406. [35] Boone R D, Nadelhoffer K J, Canary J D, et al . Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 1998, 396(6711): 570-572. [36] Schindlbacher A, Zechmeister-Boltenstern S, Kitzler B, et al . Experimental forest soil warming: response of autotrophic and heterotrophic soil respiration to a short-term 10℃ temperature rise. Plant and Soil, 2008, 303(1): 323-330. [37] Bååth E, Wallander H. Soil and rhizosphere microorganisms have the same Q 10 for respiration in a model system. Global Change Biology, 2003, 9(12): 1788-1791. [38] Irvine J, Law B E, Kurpius M R. Coupling of canopy gas exchange with root and rhizosphere respiration in a semi-arid forest. Biogeochemistry, 2005, 73(1): 271-282. [39] Wei Y Y, Yin H J, Liu Q, et al . Advance in research of forest carbon cycling under climate warming. Chinese Journal of Applied Environmental Biology, 2009, 15(6): 888-894. [40] Bradford M A, Davies C A, Frey S D, et al . Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 2008, 11(12): 1316-1327. [41] Liu H S, Liu H J, Wang Z P, et al . The temperature sensitivity of soil respiration. Progress in Geography, 2008, 27(4): 51-60. [42] Yang Y, Huang M, Liu H S, et al . The interrelation between temperature sensitivity and adaptability of soil respiration. Journal of Natural Resources, 2011, 26(10): 1812-1820. [43] Zhang W, Parker K M, Luo Y, et al . Soil microbial responses to experimental warming and clipping in a tall grass prairie. Global Change Biology, 2005, 11(2): 266-277. [44] Six J, Frey S D, Thiet R K, et al . Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 2006, 70(2): 555-569. [45] Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 2010, 3(5): 336-340. [46] Allison S D, Treseder K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology, 2008, 14(12): 2898-2909. [47] Parton W J, Schimel D S, Cole C V, et al . Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 1987, 51(5): 1173-1179. [48] Jenkinson D S, Andrew S P S, Lynch J M, et al . The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London Series B-biological Sciences, 1990, 329(1255): 361-368. [49] Hartley I P, Heinemeyer A, Ineson P. Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Global Change Biology, 2007, 13(8): 1761-1770. [50] Bardgett R D, De Deyn G B, Ostle N J. Plant-soil interactions and the carbon cycle. Journal of Ecology, 2009, 97(5): 838-839. [51] Janssens I A, Luyssaert S. Carbon cycle: nitrogen’s carbon bonus. Nature Geoscience, 2009, 2(5): 318-319. [52] Davidson E A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2009, 2(9): 659-662. [53] IPCC. Climate Change 2007: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2007. [54] Magnani F, Mencuccini M, Borghetti M, et al . The human footprint in the carbon cycle of temperate and boreal forests. Nature, 2007, 447(7146): 849-851. [55] Thomas R Q, Canham C D, Weathers K C, et al . Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 2010, 3(1): 13-17. [56] Janssens I A, Dieleman W, Luyssaert S, et al . Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 2010, 3(5): 315-322. [57] Fierer N, Schimel J P, Holden P A. Influence of drying-rewetting frequency on soil bacterial community structure. Microbial Ecology, 2003, 45(1): 63-71. [58] Waldrop M P, Firestone M K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry, 2004, 67(2): 235-248. [59] Schjønning P, Thomsen I K, Moldrup P, et al . Linking soil microbial activity to water-and air-phase contents and diffusivities. Soil Science Society of America Journal, 2003, 67(1): 156-165. [60] Högberg P, Read D J. Towards a more plant physiological perspective on soil ecology. Trends in Ecology & Evolution, 2006, 21(10): 548-554. [61] Keel S G, Siegwolf R T W, Körner C. Canopy CO 2 enrichment permits tracing the fate of recently assimilate carbon in a mature deciduous forest. New Phytologist, 2006, 172(2): 319-329. [62] Todd-Brown K E O, Hopkins F M, Kivlin S N, et al . A framework for representing microbial decomposition in coupled climate models. Biogeochemistry, 2012, 109(1-3): 19-33. [63] Fu G, Shen Z, Zhang X, et al . Response of soil microbial biomass to short-term experimental warming in alpine meadow on the Tibetan Plateau. Applied Soil Ecology, 2012, 61: 158-160. [64] Rinnan R, Michelsen A, Bååth E, et al . Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 2007, 13(1): 28-39. [65] Zhang N, Liu W, Yang H, et al . Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling. Oecologia, 2013, 173(3): 1125-1142. [66] Liu W, Zhang Z H E, Wan S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 2009, 15(1): 184-195. [67] Frey S D, Drijber R, Smith H, et al . Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biology and Biochemistry, 2008, 40(11): 2904-2907. [68] Bardgett R D, Shine A. Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry, 1999, 31(2): 317-321. [69] Ge Y, He J Z, Zheng Y M, et al . Stable isotope probing and its applications in microbial ecology. Acta Ecologica Sinica, 2006, 26(5): 1574-1582. [70] Lloyd J, Taylor J A. On the temperature dependence of soil respiration. Functional Ecology, 1994, 8(3): 315-323. [71] Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 1996, 272(5260): 393-396. [72] Knorr W, Prentice I C, House J I, et al . Long-term sensitivity of soil carbon turnover to warming. Nature, 2005, 433(7023): 298-301. [73] Wagai R, Kishimoto-Mo A W, Yonemura S, et al . Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Global Change Biology, 2013, 19(4): 1114-1125. [74] Coxall H K, Wilson P A, Pälike H, et al . Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 2005, 433(7021): 53-57. [75] Conant R T, Steinweg J M, Haddix M L, et al . Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance. Ecology, 2008, 89(9): 2384-2391. [76] Conant R T, Ryan M G, Ågren G I, et al . Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward. Global Change Biology, 2011, 17(11): 3392-3404. [77] Hopkins F M, Torn M S, Trumbore S E. Warming accelerates decomposition of decades-old carbon in forest soils. Proceedings of the National Academy of Sciences, 2012, 109(26): E1753-E1761. [78] Melillo J M, Aber J D, Muratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 1982, 63(3): 621-626. [79] Marschner B, Brodowski S, Dreves A, et al . How relevant is recalcitrance for the stabilization of organic matter in soils. Journal of Plant Nutrition and Soil Science, 2008, 171(1): 91-110. [80] Knorr M, Frey S D, Curtis P S. Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 2005, 86(12): 3252-3257. [81] Schmidt M W I, Torn M S, Abiven S, et al . Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478(7367): 49-56. [82] Kleber M, Nico P S, Plante A, et al . Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Global Change Biology, 2011, 17(2): 1097-1107. [83] Peng H Y, Li X Y, Tong S Y. Advance in shrub encroachment in arid and semiarid region. Acta Prataculturae Sinica, 2014, 23(2): 313-322. [84] Yan Z Q, Qi Y C, Dong Y S, et al . Nitrogen cycling in grassland ecosystems in response to climate change and human activities. Acta Prataculturae Sinica, 2014, 23(6): 279-292. [85] Zhou X, Liu X, Wallace L L, et al . Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. Journal of Integrative Plant Biology, 2007, 49(3): 270-281. [86] Jolankai M, Birkás M. Global climate change impacts on crop production in Hungary. Agriculturae Conspectus Scientificus, 2007, 72(1): 17-20. [87] Fan Y J, Hou X Y, Shi H X, et al . Effect of carbon cycling in grassland ecosystems on climate warming. Acta Prataculturae Sinica, 2012, 21(3): 294-302. [88] Jiang J, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology, 2010, 34(8): 979-988. [89] Jing Y L, Guan D X, Wu J B, et al . Research progress on photosynthesis regulating and controlling soil respiration. Chinese Journal of Applied Ecology, 2013, (1): 269-276. [2] 徐小锋, 田汉勤, 万师强. 气候变暖对陆地生态系统碳循环的影响. 植物生态学报, 2007, 31(2): 175-188. [15] 汪业勖, 赵士洞, 牛栋. 陆地土壤碳循环的研究动态. 生态学杂志, 1999, 18(5): 29-35. [16] 秦彧, 宜树华, 李乃杰. 青藏高原草地生态系统碳循环研究进展. 草业学报, 2012, 21(6): 275-285. [29] 周萍, 刘国彬, 薛萐. 草地生态系统土壤呼吸及其影响因素研究进展. 草业学报, 2009, 18(2): 184-193. [39] 卫云燕, 尹华军, 刘庆, 等. 气候变暖背景下森林土壤碳循环研究进展. 应用与环境生物学报, 2009, 15(6): 888-894. [41] 刘洪升, 刘华杰, 王智平, 等. 土壤呼吸的温度敏感性. 地理科学进展, 2008, 27(4): 51-60. [42] 杨毅, 黄玫, 刘洪升, 等. 土壤呼吸的温度敏感性和适应性研究进展. 自然资源学报, 2011, 26(10): 1812-1820. [69] 葛源, 贺纪正, 郑袁明, 等. 稳定性同位素探测技术在微生物生态学研究中的应用. 生态学报, 2006, 26(5): 1574-1582. [83] 彭海英, 李小雁, 童绍玉. 干旱半干旱区草原灌丛化研究进展. 草业学报, 2014, 23(2): 313-322. [84] 闫钟清, 齐玉春, 董云社, 等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制. 草业学报, 2014, 23(6): 279-292. [87] 范月君, 侯向阳, 石红霄, 等. 气候变暖对草地生态系统碳循环的影响. 草业学报, 2012, 21(3): 294-302. [88] 蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报, 2010, 34(8): 979-988. [89] 井艳丽, 关德新, 吴家兵, 等. 光合作用调控土壤呼吸研究进展. 应用生态学报, 2013, (1): 269-276. |