[1] Zhao C, Zhou H Y, Chai Q, et al . Effects of eugenol and intercropped faba-bean on wheat root growth under different water supply conditions. Acta Prataculturae Sinica, 2014, 23(2): 133-139. [2] Zhang J Z, Zhang Q Y, Sun G F, et al . Effects of drought stress and re-watering on growth and photosynthesis of Hosta . Acta Prataculturae Sinica, 2014, 23(1): 167-176. [3] Voesenek L, Sasidharan R. Ethylene-and oxygen signaling-drive plant survival during flooding. Plant Biology, 2013, 15(3): 426-435. [4] Zhang Z, Wan C, Zheng Z, et al . Plant community characteristics and their responses to environmental factors in the water level fluctuation zone of the three gorges reservoir in China. Environmental Science and Pollution Research, 2013, 20(10): 7080-7091. [5] Aerts R, De Caluwe H, Beltman B. Is the relation between nutrient supply and biodiversity co-determined by the type of nutrient limitation? . Oikos, 2003, 101(3): 489-498. [6] Ye C, Li S, Zhang Y, et al . Assessing heavy metal pollution in the water level fluctuation zone of China’s Three Gorges Reservoir using geochemical and soil microbial approaches. Environmental Monitoring and Assessment, 2013, 185(1): 231-240. [7] Lu Z J, Li L F, Jiang M X, et al . Can the soil seed bank contribute to revegetation of the drawdown zone in the Three Gorges Reservoir Region. Plant Ecology, 2010, 209(1): 153-165. [8] Wassen M J, Peeters W H M, Venterink H O. Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland. Plant Ecology, 2003, 165(1): 27-43. [9] Luo F L, Thiele B, Janzik I, et al . De-submergence responses of antioxidative defense systems in two wetland plants having escape and quiescence strategies. Journal of Plant Physiology, 2012, 169(17): 1680-1689. [10] Li M, Yang D, Li W. Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. Photosynthetica, 2007, 45(2): 222-228. [11] Luo F L, Nagel K A, Scharr H, et al . Recovery dynamics of growth, photosynthesis and carbohydrate accumulation after de-submergence: a comparison between two wetland plants showing escape and quiescence strategies. Annals of Botany, 2011, 107(1): 49-63. [12] Hattori Y, Nagai K, Furukawa S, et al . The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460: 1026-1030. [13] Fukao T, Xu K, Ronald P C, et al . A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. The Plant Cell Online, 2006, 18(8): 2021-2034. [14] Xu K, Xu X, Fukao T, et al . Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442: 705-708. [15] Groeneveld H W, Voesenek L A C J. Submergence-induced petiole elongation in Rumex palustris is controlled by developmental stage and storage compounds. Plant and Soil, 2003, 253(1): 115-123. [16] Das K K, Sarkar R K, Ismail A M. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Science, 2005, 168(1): 131-136. [17] Dixon M H, Hill S A, Jackson M B, et al . Physiological and metabolic adaptations of Potamogeton pectinatus L. tubers support rapid elongation of stem tissue in the absence of oxygen. Plant and Cell Physiology, 2006, 47(1): 128-140. [18] Chen L X, Guan J Y. Handbook of Soil Experiment and Practice[M]. Harbin: Northeast Forestry University Press, 2005: 44. [19] Yu G L. Effects of water logging on intraspecific interactions of the clonal herb Alternanthera philoxeroides . Chinese Journal of Plant Ecology, 2011, 35(9): 973-980. [20] Armas C, Ordiales R, Pugnaire F I. Measuring plant interactions: a new comparative index. Ecology, 2004, 85(10): 2682-2686. [21] Kikvidze Z, Khetsuriani L, Kikodze D, et al . Seasonal shifts in competition and facilitation in subalpine plant communities of the central Caucasus. Journal of Vegetation Science, 2006, 17(1): 77-82. [22] Bailey-Serres J, Voesenek L. Flooding stress: acclimations and genetic diversity. Annual Review of Plant Biology, 2008, 59: 313-339. [23] Colmer T D, Voesenek L. Flooding tolerance: suites of plant traits in variable environments. Functional Plant Biology, 2009, 36(8): 665-681. [24] Dat J, Vandenabeele S, Vranova E, et al . Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 2000, 57(5): 779-795. [25] Mommer L, Pons T L, Wolters-Arts M, et al . Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiology, 2005, 139(1): 497-508. [26] Zhang X X, Liu M, Cheng X Y, et al . Comparative study of the morphological and anatomical features of Lindernia procumbens in different ecological environments (Linderniaceae). Acta Prataculturae Sinica, 2014, 23(2): 235-242. [27] Mommer L, Wolters-Arts M, Andersen C, et al . Submergence-induced leaf acclimation in terrestrial species varying in flooding tolerance. New Phytologist, 2007, 176(2): 337-345. [28] Colmer T D, Pedersen O. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO 2 and O 2 exchange. New Phytologist, 2008, 177(4): 918-926. [29] Voesenek L, Colmer T D, Pierik R, et al . How plants cope with complete submergence. New Phytologist, 2006, 170(2): 213-226. [30] Luo F L, Nagel K A, Zeng B, et al . Photosynthetic acclimation is important for post-submergence recovery of photosynthesis and growth in two riparian species. Annals of Botany, 2009, 104(7): 1435-1444. [31] Wang H F, Zeng B, Li Y, et al . Effects of long-term submergence on survival and recovery growth of four riparian plant species in Three Gorges Reservoir Region. Chinese Journalof Plant Ecology, 2008, 32: 977-984. [32] Wang H F, Zeng B, Qiao P, et al . Survival and growth of Vetiveria zizanioides , Acorus calamus and Alternanthera philoxeroides to long-term submergence. Acta Ecologica Sinca, 2008, 28: 2571-2580. [33] Manzur M E, Grimoldi A A, Insausti P, et al . Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence. Annals of Botany, 2009, 104(6): 1163-1169. [34] Bruno J F, Stachowicz J J, Bertness M D. Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 2003, 18(3): 119-125. [35] Callaway R M. Positive Interactions and Interdependence in Plant Communities[M]. Dordrecht: Springer, 2007. [36] Crain C M. Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. Journal of Ecology, 2008, 96(1): 166-173. [37] Bertness M D, Callaway R. Positive interactions in communities. Trends in Ecology & Evolution, 1994, 9(5): 191-193. [1] 赵财, 周海燕, 柴强. 不同供水水平下丁香酚和间作蚕豆对小麦根系生长的互作效应. 草业学报, 2014, 23(2): 133-139. [2] 张金政, 张起源, 孙国峰, 等. 干旱胁迫及复水对玉簪生长和光合作用的影响. 草业学报, 2014, 23(1): 167-176. [18] 陈立新, 关继义. 土壤实验实习教程[M]. 哈尔滨: 东北林业大学出版社, 2005: 44. [19] 于国磊. 水淹对克隆植物空心莲子草种内关系的影响. 植物生态学报, 2011, 35(9): 973-980. [26] 张欣欣, 刘玫, 程薪宇, 等. 不同生境下陌上菜的形态解剖学比较. 草业学报, 2014, 23(2): 235-242. [31] 王海锋, 曾波, 李娅, 等. 长期完全水淹对 4 种三峡库区岸生植物存活及恢复生长的影响. 植物生态学报, 2008, 32(5): 977-984. [32] 王海锋, 曾波, 乔普, 等. 长期水淹条件下香根草( Vetiveria zizanioides ), 菖蒲( Acorus calamus )和空心莲子草( Alternanthera philoxeroides )的存活及生长响应. 生态学报, 2008, 28(6): 2571-2580. |