[1] Guan S Y. Soil Enzymology and Research Method[M]. Beijing: Agricultural Press, 1986: 274-323. [2] Lin X G. Principle and Method of Soil Microbiology Research[M]. Beijing: Higher Education Press, 2010: 243-265. [3] Dick R P. Soil enzyme activities as integrative indicators of soil health. In: Pankhurst C E, Doube B M, Gupta V V S R. Biological Indicators of Soil Health[M]. Wellingford: CABI, 1997: 121-156. [4] McLaren A D. Soil as a system of humus and clay immobilized enzymes. Chemica Scripta, 1975, 8(3): 97-99. [5] Sinsabaugh R L, Antibus R K, Linkins A E. An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agriculture Ecosystems and Environment, 1991, 34(1-4): 43-54. [6] Lu H, Yao T, Li J H, et al . Vegetation and soil microorganism characteristics of degraded grasslands. Acta Prataculturae Sinica, 2015, 24(5): 34-43. [7] Garcia C, Hernándes T. Biological and biochemical indicators in derelict soils subject to erosion. Soil Biology and Biochemistry, 1997, 29(2): 171-177. [8] Dick R P. Soil enzyme activity as an indicator of soil quality. In: Doran J W (eds). Defining Soil Quality for a Sustainable Environment[M]. Madison: WI, 1994: 107-124. [9] Moorhead D L, Sinsabaugh R L. Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Applied Soil Ecology, 2000, 14(1): 71-79. [10] Acosta-Martinez V, Tabatabai M A. Enzyme activity in a liming agricultural. Biology and Fertility of Soils, 2000, 31(1): 85-91. [11] Wang J H, Yin R, Zhang H Y, et al . Changes in soil enzyme activities, microbial biomass, and soil nutrient status in response to fertilization regimes in a long-term field experiment. Ecology and Environment, 2007, 16(1): 191-196. [12] Guo P, Wang C Y, Jia Y, et al . Responses of soil microbial biomass and enzymatic activities to fertilizations of mixed inorganic and organic nitrogen at a subtropical forest in East China. Plant and Soil, 2011, 338(1-2): 355-366. [13] Wan Z M, Song C C, Liu D Y. The enzyme activity of Calamagrostis angustifolia litter decomposition affected by exogenous nitrogen input in a freshwater marsh. Acta Scientiae Circumstantiae, 2009, 29(9): 1830-1835. [14] Edwards I P, Zak D R, Kellner H, et al . Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. Plos One, 2011, 6(6): e20421. [15] Zeng Y, Zhou L Q, Huang M F, et al . Effects of nitrogen fertilization on enzyme activities in surface layer of red soil under mulberry cultivation. Acta Ecologica Sinica, 2014, 34(18): 5306-5310. [16] Andersson M, Kjoller A, Struwe S. Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests. Soil Biology and Biochemistry, 2004, 36(10): 1527-1537. [17] Hobbie S E. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems, 2000, 3(5): 484-494. [18] Wang R Z, Dorodnikov M, Yang S, et al . Response of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland. Soil Biology and Biochemistry, 2015, 81(2): 359-367. [19] Liu L, Zhu X, Sun G, et al . Effects of simulated warming and fertilization on activities of soil enzymes in alpine meadow. Pratacultural Science, 2011, 28(8): 1405-1410. [20] Zhou X M. Chinese Kobresia Meadows[M]. Beijing: Science Press, 2001. [21] Dessureault-Rompré J, Zebarth B J, Georgallas A, et al . Temperature dependence of soil nitrogen mineralization rate: Comparison of mathematical models, reference temperatures and origin of soils. Geoderma, 2010, 157(3-4): 97-108. [22] Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. [23] James T W, Rien A, George A K, et al . Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils. Biochemical Society Transactions, 2011, 39(1): 309-314. [24] Zhao X Q, Zhou X M. Ecological basis of alpine meadow ecosystem management in the Tibet: experiences and approaches from Haibei Alpine meadow ecosystem research station. Ambio, 1999, 28(8): 642-647. [25] Tabatabai M A. Soil enzymes. In: Mickelson S H (ed). Methods of soil analysis, Part 2. Microbiological and Biochemical Properties[M]. Madison: Soil Science Society of America, WI, 1994: 775-833. [26] Tabatabai M A, Bremner J M. Arylsulfatase activity of soils. Proceedings Soil Science Society of America, 1970, 34(2): 225-229. [27] Rodriguez-Kabana R, Godoy G, Morgan-Jones G, et al . The determination of soil chitinase activity: Conditions for assay and ecological studies. Plant and Soil, 1983, 75(1): 95-106. [28] Gu X Y, Hu Z J. A method of determining the activity of soil chitinase. Chinese Journal of Soil Science, 1994, 25(6): 284-285. [29] Bao S D. Soil Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 1998: 56-83. [30] White A R. Visualization of cellulases and cellulose degradation. In: Brown R M (ed). Cellulose and other Natural Polymer Systems: Biogenesis, Structure, and Degradation[M]. New York: Plenum Press, 1982: 489-509. [31] Olander L P, Vitousek P M. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 2000, 49(2): 175-190. [32] Wang C T, Long R J, Wang Q J, et al . Distribution of organic matter, nitrogen and phosphorus along an altitude gradient and productivity change and their relationships with environmental factors in the alpine meadow. Acta Prataculturae Sinica, 2005, 14(4): 15-20. [33] Sun Z G, Liu J S, Yu J B. Seasonal change characteristics of alkaline hydrolysis nitrogen and total nitrogen in typical calamagrostis angustifolia wetland soils of Sanjiang Plain. Journal of Arid Land Resources and Environment, 2008, 23(8): 145-149. [34] Sinsabaugh R L, Carreiro M M, Repert D A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 2002, 60(1): 1-24. [35] Burns R G. Enzyme activity in soil: location and possible role in microbial ecology. Soil Biology and Biochemistry, 1982, 14(5): 423-427. [36] Moorhead D L, Sinsabaugh R L. A theoretical model of litter decay and microbial interaction. Ecological Monographs, 2006, 76(2): 151-174. [37] McGill W B, Cole C V. Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma, 1981, 26(4): 267-286. [38] Wright A L, Reddy K R. Phosphorus loading effects on extracellular enzyme activity in Everglades Wetland soils. Soil Science Society of America, 2001, 65(2): 588-595. [39] Jason C N, Alan R T, Gerd G, et al . Variable effects of nitrogen addition on the stability and turnover of soil carbon. Nature, 2002, 419(10): 915-917. [40] Hu L, Wang C T, Wang G X, et al . Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China. Acta Prataculterae Sinica, 2014, 23(3): 8-19. [41] Hobbie S H, Vitousek P M. Nutrient limitation of decomposition in Hawaiian forests. Ecology, 2000, 81(7): 1867-1877. [42] Yang X X, Ren F, Zhou H K, et al . Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2014, 38(2): 159-166. [1] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [2] 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010. [6] 卢虎, 姚拓, 李建宏, 等. 高寒地区不同退化草地植被和土壤微生物特性及其相关性研究. 草业学报, 2015, 24(5): 34-43. [11] 王俊华, 尹睿, 张华勇, 等. 长期定位施肥对农田土壤酶活性及其相关因素的影响.生态环境, 2007, 16(1): 191-196. [13] 万忠梅, 宋长春, 刘德燕. 氮输入对沼泽湿地小叶章枯落物分解过程中酶活性的影响. 环境科学学报, 2009, 29(9): 1830-1835. [15] 曾艳, 周柳强, 黄美福, 等. 不同施氮量对桑园红壤耕层酶活性的影响. 生态学报, 2014, 34(18): 5306-5310. [19] 刘琳, 朱霞, 孙庚, 等. 模拟增温与施肥对高寒草甸土壤酶活性的影响. 草业科学, 2011, 28(8): 1405-1410. [20] 周兴民.中国嵩草草甸[M].北京: 科学出版社, 2001. [22] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947. [28] 顾向阳, 胡正嘉. 一种测定土壤几丁质酶活性的方法. 土壤通报, 1994, 25(6): 284-285. [29] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 1998. [32] 王长庭, 龙瑞军, 王启基, 等. 高寒草甸不同海拔梯度土壤有机质、氮磷分布和生产力变化及其与环境因子的关系. 草业学报, 2005, 14(4): 15-20. [33] 孙志高, 刘景双, 于君宝. 三江平原小叶章湿地土壤中碱解氮和全氮含量的季节变化特征. 干旱区资源与环境, 2009, 23(8): 145-149. [40] 胡雷, 王长庭, 王根绪, 等. 三江源不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化. 草业学报, 2014, 23(3): 8-19. [42] 杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 2014, 38(2): 159-166. |