[1] Hooper D U, Johnson L. Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry, 1999, 46: 247-293. [2] Zeng D H, Chen G S. Ecological stoichiometry: a science to explore the complexity of living systems. Chinese Journal of Plant Ecology, 2005, 29(6): 1007-1019. [3] Xing X R, Han X G, Chen L Z. A review on research of plant nutrient use efficiency. Chinese Journal of Applied Ecology, 2000, 11(5): 785-790. [4] Lv X T, Wang Q B, Han X G. Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland. Ecological Engineering, 2011, 37: 534-538. [5] Aerts R. Nutrient resorption from senescing leaves of perennials: are there general patterns. Journal of Ecology, 1996, 84: 597-608. [6] Qing Y, Sun F D, Li Y, et al . Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, southwest, China. Acta Prataculturae Sinica, 2015, 24(3): 38-47. [7] Zhang L X, Bai Y F, Han X G. Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica, 2004, 46(3): 259-270. [8] An Z, Niu D C, Wen H Y, et al . Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China. Chinese Journal of Plant Ecology, 2011, 35(8): 801-807. [9] Zhang W Y, Fan J W, Zhong H P, et al . The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 2010, 18(4): 503-509. [10] Geng Q. The Study on the Homeostasis and Growth Rate of a Higher Plant and Their Mechanism[D]. Lanzhou: Gansu Agricultural University, 2005. [11] Chen H J. The Response of Reproductive Characteristics and Ecological Stoichiometry of Main Plant Population to Stocking Rate in Inner Mongolia Desert Steppe[D]. Huhhot: Inner Mongolia Agricultural University, 2011. [12] Aerts R. Nitrogen partitioning between resorption and decomposition pathways: a trade-off between nitrogen use efficiency and litter decomposition. Oikos, 1997, 80: 603-605. [13] Yang K, Huang J H, Dong D, et al . Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 34(1): 17-22. [14] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006. [15] Qi Z M, Wang K Y. Effects of Fargesia denudata density on its litterfall production, nutrient return, and nutrient use efficiency. Chinese Journal of Applied Ecology, 2007, 18(9): 2025-2029. [16] Zhao Q, Zeng D H. Diagnosis methods of N and P limitation to tree growth: A review. Acta Phytoecologica Sinica, 2005, 29(1): 153-163. [17] Knops J M H, Naeemw S, Reich P B. The impact of elevated CO 2 , increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biology, 2007, 13: 1960-1971. [18] Henry H A L, Cleland E E, Field C B, et al . Interactive effects of elevated CO 2 , N deposition and climate change on plant litter quality in a California annual grassland. Oecologia, 2005, 142: 465-473. [19] Huang J Y, Zhu X G, Yuan Z Y, et al . Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. Plant and Soil, 2008, 306: 149-158. [20] Xia J Y, Wan S Q. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 2008, 179: 428-439. [21] Van Heerwaarden L M, Toet S, Aerts R. Nitrogen ang phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology, 2003, 91: 1060-1070. [22] 曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 2005, 29(6): 1007-1019. [23] 邢雪荣, 韩兴国, 陈灵芝. 植物养分利用效率研究综述. 应用生态学报, 2000, 11(5): 785-790. [24] 青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析. 草业学报, 2015, 24(3): 38-47. [25] 张丽霞, 白永飞, 韩兴国. 内蒙古典型草原生态系统中N素添加对羊草和黄囊苔草N:P化学计量学特征的影响. 植物学报, 2004, 46(3): 259-270. [26] 安卓, 牛得草, 文海燕, 等. 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响. 植物生态学报, 2011, 35(8): 801-807. [27] 张文彦, 樊江文, 钟华平, 等. 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草地学报, 2010, 18(4): 503-509. [28] 庚强. 高等植物内稳性和生长率机理的研究[D]. 兰州: 甘肃农业大学, 2005. [29] 陈海军. 荒漠草原主要植物种群繁殖性状及化学计量特征对载畜率的响应[D]. 呼和浩特: 内蒙古农业大学, 2011. [30] 杨阔, 黄建辉, 董丹, 等. 青藏高原草地植物群落冠层叶片氮磷化学计量学分析. 植物生态学报, 2010, 34(1): 17-22. [31] 齐泽民, 王开运. 密度对缺苞箭竹凋落物养分归还及养分利用效率的影响. 应用生态学报, 2007, 18(9): 2025-2029. [32] 赵琼, 曾德慧. 林木生长氮磷限制的诊断方法研究进展. 植物生态学报, 2005, 29(1): 153-163. |