[1] FAO. Global Network on Integrated Soil Management for Sustainable Use of Salt-affected Soil[M]. Rome, Italy: FAO Land and Plant Nutrition Management Service, 2005. [2] Geilfus C M, Zörb C, Mühling K H. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize ( Zea mays L.). Plant Physiology Biochemistry, 2010, 48: 993-998. [3] Saboora A, Kiarostami K, Behroozbayati F, et al . Salinity (NaCl) tolerance of wheat genotypes at germination and early seedling growth. Pakistan Journal of Biological Science, 2006, 9: 2009-2021. [4] Yeo A R, Flowers T J. Salt tolerance in the halophyte Suaeda maritime L. Dum: evaluation of the effect of salinity upon growth. Journal of Experimental Botany, 1980, 31: 1171-1183. [5] Stevenson G. An agronomic and taxonomic review of the genus Melilotus Mill. Canadian Journal of Plant Science, 1969, 49: 1-20. [6] Rogers M E, Colmer T D, Frost K, et al . Diversity in the genus Melilotus for tolerance to salinity and waterlogging. Plant and Soil, 2008, 304: 89-101. [7] Nichols P G H, Malik A I, Stockdal, et al . Salt tolerance and avoidance mechanism at germination of annual pasture: importance for adaptation to saline environments. Plant and Soil, 2009, 315: 241-255. [8] Rogers M E, Colmer T D, Nichols P G H, et al . Salinity and waterlogging tolerance amongst accessions of messina ( Melilotus siculus ). Crop and Pasture Science, 2011, 62: 225-235. [9] Maddaloni J. Forage production on saline and alkaline soil in the humid region of Argentina. Reclamation & Revegetation Research, 1986, 5: 11-16. [10] Evans P M, Kearney G A. Melilotus albus (Medik.) is productive and regenerates well on saline soils of neutral to alkaline reaction in the high rainfall zone of south-western Victoria. Australian Journal of Experimental Agriculture, 2003, 43: 349-355. [11] Ashraf M, Noor R, Zafar Z U, et al . Growth and ion distribution in salt stressed Melilotus indica (L.) All. and Medicago sativa L. Flora (Jena), 1994, 189: 207-213. [12] Rogers M E, Evans P M. Do Melilotus species have a role for saline areas in Australia[C]// Asghar M. Proceedings of the 8th Australian Agronomy Conference Toowoomba. Toowoomba: Australian Society of Agronomy, 1996: 486-489. [13] Emad A, Al S. Melilotus indicus (L.) All. a salt-tolerant wild leguminous herb with high potential for use as a forage crop in salt-affected soils. Flora, 2009, 204: 737-746. [14] Hyder S Z, Yasmin S. Salt tolerance and cation interaction in alkali sacaton at germination. The Journal of Range Management, 2004, 56: 25-39. [15] Maranon T, Garcia L V, Troncoso A. Salinity and germination of annual Melilotus from the guadalquivir delta (SW Spain). Plant and Soil, 1989, 119: 223-228. [16] Gulzar S, Khan M A. Seed germination of a halophytic grass Aeluropus Lagopoides . Annals of Botany, 2001, 87: 319-324. [17] Abari A K, Nasr M H, Hojjati M, et al . Salt effects on seed germination and seedling emergence of two acacia species. African Journal of Plant Science, 2011, 5: 52-56. [18] Yadav R K, Kumar A, Lal D, et al . Yield responses of winter (rabi) forage crops to irrigation with saline drainage water. Experimental Agriculture, 2004, 40: 65-75. [19] Katsuhara M, Kawasaki T. Salt stress induced nuclear and DNA degradation inmeristematic cell of barley roots. Plant and Cell Physiology, 1996, 37: 169-173. [20] El-Haddad H E, Noaman M M. Leaching requirement and salinity threshold for the yield and agronomic characteristic of Halophytes under salt stress. Journal of Arid Environments, 2001, 49: 865-874. [21] Wang H, Wu Z, Chen Y, et al . Effects of salt and alkali stresses on growth and ion balance in rice ( Oryza sativa L.). Plant Soil Environment, 2011, 57: 286-294. [22] Yang G H. Alkali stress induced the accumulation and secretion of organic acids in wheat. African Journal of Agricultural Research, 2012, 7: 2844-2852. [23] Trinchant J C, Boscari A, Spennato G, et al . Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Plant Physiology, 2004, 135(3): 1583-1594. [24] Flowers T J, Yeo A R. Ion relations of plant under drought and salinity. Australian Journal of Plant Physiology, 1986, 25(1): 75-91. [25] Das-Chatterjee A, Goswami L, Maitra S, et al . Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) tateoka (PcINo1) confers salt tolerance to evolutionary diverse organisms. FEBS Letters, 2006, 580: 3980-3988. [26] Ayako N, Hiroshi S, Tatsuru M, et al . Two distinct isopentenyl diphosphate isomerases in cytosol and plastid are differentially induced by environmental stresses in tobacco. FEBS Letters, 2001, 506: 61-64. [27] Serrato V G, Ferro M, Ferraro D, et al . Anatomical changes in Prosopis tamarugo Phil. seeding growing at different level of NaCl salinity. Annals of Botany (London), 1991, 68: 47-53. [28] Reinoso H, Sosa L, Ramirez L, et al . Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Canadian Journal of Botany, 2004, 82: 618-628. [29] Hu Y, Fromm J, Schmidhalter U. Effect of salinity on tissue architecture in expanding wheat leaves. Planta, 2005, 220: 838-848. [30] Shannon M C, Grieve C M, Francois L E. Whole plant response to salinity[M]// Wilkinson R E, Dekker M. Plant-environment Interactions. New York: Marcel Dekker. Inc., 1994: 199-224. [31] Hamdia M, Abd E, Shaddad M A K. Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants. Journal of Plant Nutrition, 1996, 19: 717-728. [32] Islam M S, Akhter M M, Sabagh A E, et al . Comparative studies on growth and physiological responses to saline and alkaline stresses of foxtail millet ( Setaria italica L.) and proso millet ( Panicum miliaceum L.). Australian Journal of Crop Science, 2011, 5: 1269-1277. [33] Yang C W, Shi D C, Wang D L. Comparative effects of salt and alkali stress on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 2008, 56: 179-190. [34] Esau K. Anatomy of Seed Plants[M]. 2nd Edition. Shanghai: Shanghai Science and Technology Press, 1982: 245-249. [35] Hameed M, Ashraf M, Naz N. Anatomical adaptations to salinity in cogon grass [ Imperata cylindrical (L.) Raeuschel] from the salt range, Pakinstan. Plant and Soil, 2009, 322: 229-238. [36] Solomon M, Grdalovich E, Mayer A M, et al . Changes induced by salinity to the anatomy and morphology of excised roots in culture. Annals of Botany, 1986, 57: 811-818. [37] Akram M, Akhtar S, Javed I U H, et al . Anatomical attributes of different wheat ( Triticum aestivum ) accessions/varieties to NaCl salinity. International Journal of Agriculture Biology, 2002, 4: 166-168. [38] Paz R C, Reinoso H, Espasandin F D, et al . Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots. Plant Biology, 2014, 16: 1042-1049. [39] Tian C X, Zhang Y M, Wang K, et al . The anatomical structure response in alfalfa to salinity-alkalinity stress of NaHCO 3 . Acta Prataculturae Sinica, 2014, 23(5): 133-142. [40] Bray S, Reid D M. The effect of salinity and CO 2 enrichment on the growth and anatomy of the second trifoliate leaf of Phaseolus vulgaris . Canadian Journal of Botany, 2002, 80: 349-359. [41] Arafa A A, Khafagy M A, El-Banna M F. The effect of glycinebetaine or ascorbic acid on grain germination and leaf structure of sorghum plants grown under salinity stress. Australian Journal of Crop Science, 2009, 3: 294-304. [42] Fahn A. Plant Anatomy[M]. Wu S M, Liu D Y, Translate. Tianjing: Nankai University Press, 1990: 212. [43] Terashima I, Hanba Y T, Tholen D, et al . Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 2011, 155: 108-116. [44] Zhou Y, Wang H, Zhang S Z. Phytology[M]. the first volume. Beijing: Beijing Normal University Press, 1988: 93. [45] Suh M C, Samuels A L, Jetter R, et al . Cuticular lipid composition, surface structure, and gene expression in arabidopsis stem epidermis. Plant Physiology, 2005, 139: 1649-1665. [46] Wang J, Huang W, Liu T. Anatomical structure of seminal root of spring wheat under different water stress. Journal of Desert Research, 2000, 20(1): 79-81. [47] Yu N I, Lee S A, Lee M H, et al . Characterization of short-root function in the arabidopsis root vascular system. Molecules and Cells, 2010, 30: 113-119. [48] Munns R, Termaat A. Whole-plant responses to salinity. Australian Journal of Plant Physiology, 1986, 13: 143-60. [49] Atkin O K, Macherel D. The crucial role of plant mitochondria in orchestrating drought tolerance. Annals of Botany, 2009, 103: 581-597. [50] Smith M M, Hodson M J, Öpik H, et al . Salt induced ultrastructural damage to mitochondria in root tips of a salt-sensitive ecotype of Agrostis stolonifera . Journal of Experimental Botany, 1982, 33: 886-895. [51] Yamamoto Y, Kobayashi Y, Devi S R, et al . Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiology, 2002, 128: 63-72. [52] Pastore D, Trono D, Laus M N, et al . Possible plant mitochondria involvement in cell adaptation to drought stress a case study: durum wheat mitochondria. Journal of Experimental Botany, 2007, 2: 195-210. [53] Koyro H W. Ultrastructural and physiological changes in root cells of sorghum plants ( Sorghum bicolor×S. sudanensis cv. Sweet sioux) induced by NaCl. Journal of Experimental Botany, 1996, 48: 693-706. [54] Endress A G, Sjolund R D. Ultrastructural cytology of callus cultures of Streptanthus tortuosus as affected by temperature. American Journal of Botany, 1976, 63: 1213-1224. [55] Petra P S, Tal K, Guy A, et al . Chloroplasts of salt-grown arabidopsis seedlings are impaired in structure, genome copy number and transcript levels. PLoS One, 2013, 8: e82548. [56] Wang X, Wang J G, Liu H L, et al . Influence of natural saline-alkali stress on chlorophyll content and chloroplast ultrastructure of two contrasting rice ( Oryza sativa L. Japonica) cultivars. Australian Journal of Crop Science, 2013, 7: 289-292. [34] 伊稍 K. 种子植物解剖学[M]. 2版. 上海: 上海科学技术出版社, 1982: 245-249. [39] 田晨霞, 张咏梅, 王凯, 等. 紫花苜蓿组织解剖结构对NaHCO 3 盐碱胁迫的响应. 草业学报, 2014, 23(5): 133-142. [42] Fahn A. 植物解剖学[M]. 吴树明,刘德仪, 译.天津: 南开大学出版社, 1990: 212. [44] 周仪, 王慧, 张述祖. 植物学[M]. 上册. 北京: 北京师范大学出版社, 1988: 93. |