[1] Fu G Z, Bai W Q. Advances and prospects of evaluating cultivated land quality. Resources Science, 2015, 37(2): 226-236. [2] Zuo L J, Dong T T, Wang X, et al . Multiple cropping index of Northern China based on MODIS/EVI. Transactions of the CSAE, 2009, 25(8): 141-146. [3] Xie H L, Liu G Y. Spatiotemporal difference and determinants of multiple cropping index in China during 1998-2012. Acta Geographical Sinica, 2015, 70(4): 604-614. [4] Fu Q L, Yu J Y, Wang Z Q. Nutrient cycling in easily drought farmland ecosystem. Chinese Journal of Applied Ecology, 1993, 4(2): 146-149. [5] Inamura T, Mukai Y, Maruyama A, et al . Effects of nitrogen mineralization on paddy rice yield under low nitrogen input conditions in irrigated rice-based multiple cropping with intensive cropping of vegetables in southwest China. Plant and Soil, 2009, 315: 195-209. [6] Wang Y, Tanaka T, Inoue H, et al . Annual nutrient balance and soil chemical properties in heavy multiple cropping system in the coastal area of southeast Lake Dianchi, Yunnan Province, China. Plant Production Science, 2015, 18: 323-335. [7] Aulakh M S, Pasricha N S. The effect of green manuring and fertilizer N application on enhancing crop productivity in mustard-rice rotation in semi-arid subtropical regions. European Journal of Agronomy, 1998, 8: 51-58. [8] Turgut I, Bilgili U, Duman A, et al . Effect of green manuring on the yield of sweet corn. Agronomy for Sustainable Development, 2005, 25: 433-438. [9] Huang G Q, Zhou L H, Yang B J, et al . Improving soil fertility with different multiple cropping patterns in upland red soil. Acta Ecologica Sinica, 2014, 34(18): 5191-5199. [10] Sangakkara U R, Stamp P. Productivity and nitrogen use of maize as affected by in situ and ex situ green manuring in major and minor seasons of tropical Asia. Acta Agronomica Hungarica, 2009, 57: 285-296. [11] N'Dayegamiye A, Tran T S. Effects of green manures on soil organic matter and wheat yields and N nutrition. Canadian Journal of Soil Science, 2001, 81: 371-382. [12] Chowdhury M K, Rosario E L. Comparison of nitrogen, phosphorus and potassium utilization efficiency in maize/mung bean intercropping. Journal of Agricultural Science, 1994, 122: 193-199. [13] Li L, Li X L, Zhang F S, et al . Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in wheat/soybean intercropping. Plant Nutrition and Fertilizer Science, 2000, 6(2): 140-146. [14] Zhang J D, Bao X G, Cao W D, et al . Effect of intercropping green manure crops on maize yield and soil fertility. Soil and Fertilizer Sciences in China, 2013, (4): 43-47. [15] Dalla C, Emerson L. Soil physical properties under maize in monoculture or intercropped with summer legumes. Revista Brasileira DE Ciencia DO Solo, 2013, 37(5): 1393-1401. [16] Scalise A, Tortorella D, Pristeri A, et al . Legume-barley intercropping stimulates soil N supply and crop yield in the succeeding durum wheat in a rotation under rainfed conditions. Soil Biology & Biochemistry, 2015, 89: 150-161. [17] Bao S D. Soil Analysis of Chemical and Agronomic Trait[M]. Beijing: China Agriculture Press, 2005. [18] Fan F, Zhang F, Song Y, et al . Nitrogen fixation of faba bean ( Vicia faba L.) interacting with a non-legume in two contrasting. Plant and Soil, 2006, 283: 275-286. [19] Rusinamhodzi L, Corbeels M, Nyamangara J, et al . Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Research, 2012, 136: 12-22. [20] Anjum M A, Qasim S A, Ahmad S, et al . Assessment of advantages of pea and non-legume winter vegetable intercropping systems through competition and economic indices. Experimental Agriculture, 2015, 51: 327-343. [21] Zhao J H, Sun J H, Fan T L, et al . Effect of production of soybean/maize inter-cropping and the impact of interspecific competition on corn spacing. Agricultural Research in the Arid Areas, 2015, 33(3): 159-163, 183. [22] Gong W Z, Jiang C D, Wu Y S, et al . Tolerance vs. avoidance: two strategies of soybean ( Glycine max ) seedlings in response to shade in intercropping. Photosynthetica, 2015, 53: 259-268. [23] Mappaona, Yoshida S, Kitou M. Yield response of cabbage to several tropical green manure legumes incorporated into soil. Soil Science and Plant Nutrition, 1994, 40: 415-424. [24] Ashraf M, Mahmood T, Azam F, et al . Comparative effects of applying leguminous and non-leguminous green manures and inorganic N on biomass yield and nitrogen uptake in flooded rice ( Oryza sativa ). Biology and Fertility of Soils, 2004, 40: 147-152. [25] Maltais-Landry G. Legumes have a greater effect on rhizosphere properties (pH, organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops. Plant and Soil, 2015, 394: 139-154. [26] Lv Y, Wu P T, Chen X L, et al . Effect of above-and below-ground interactions on maize/soybean intercropping advantage. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 129-136, 142. [27] Dang X Y, Liu J G, Panni G L, et al . Accumulation and competition of nitrogen, phosphorus and potassium in cotton-based intercropping systems. Plant Nutrition and Fertilizer Science, 2013, 19(1): 166-173. [28] Li Y Y, Hu H S, Cheng X, et al . Effect of growth of interspecific interactions and nitrogen on broad bean/maize intercropping system. Acta Ecologica Sinica, 2011, 31(6): 1617-1630. [29] Tang J C, Mboreha A, She L N, et al . Nutritional effects of soybean root architecture in a maize/soybean intercropping system. Agricultural Sciences in China, 2005, 38(6): 1196-1203. [30] Celette F, Findeling A, Gary C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. European Journal of Agronomy, 2009, 30: 41-51. [31] Regehr A, Oelbermann M, Videla C, et al . Gross nitrogen mineralization and immobilization in temperate maize-soybean intercrops. Plant and Soil, 2015, 391: 353-365. [32] Adu-Gyamfi J J, Myaka F A, Sakala W D, et al . Biological nitrogen fixation and nitrogen and phosphorus budgets in farmer-managed intercrops of maize-pigeonpea in semi-arid southern and eastern Africa. Plant and Soil, 2007, 295: 127-136. [33] Zhang L E, Shuang W Y, Yun A P, et al . Spatio-temporal variability and the influencing factors of soil available potassium in 30 years in Quzhou county, Hebei province. Scientia Agricultura Sinica, 2014, 47(5): 923-933. [34] Li T X, Ma G R, Wang C Q, et al . Mineral potassium activation in rhizosphere soils and roots exudates of grain amaranth. Chinese Journal of Soil Science, 2003, 34(1): 48-51. [35] Zhang G, Yang Z, Dong S. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Research, 2011, 124: 66-73. [36] Jiao N Y, Ning T Y, Yang M K, et al . Effects of maize II peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecologica Sinica, 2013, 33(14): 4324-4330. [37] Schroder D, Kopke U. Faba bean ( Vicia faba L.) intercropped with oil crops-a strategy to enhance rooting density and to optimize nitrogen use and grain production? Field Crops Research, 2012, 135: 74-81. [38] Stopes C, Millington S, Woodward L. Dry matter and nitrogen accumulation by three leguminous green manure species and the yield of a following wheat crop in an organic production system. Agriculture Ecosystems & Environment, 1996, 57: 189-196. [39] Dakora F D, Phillips D A. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 2002, 245: 35-47. [40] Singh B, Pandey R. Differences in root exudation among phosphorus-starved genotypes of maize and green gram and its relationship with phosphorus uptake. Journal of Plant Nutrition, 2003, 26: 2391-2401. [41] 付国珍, 摆万奇. 耕地质量评价研究进展及发展趋势. 资源科学, 2015, 37(2): 226-236. [42] 左丽君, 董婷婷, 汪潇, 等. 基于MODIS/EVI的中国北方耕地复种指数提取. 农业工程学报, 2009, 25(8): 141-146. [43] 谢花林, 刘桂英. 1998-2012年中国耕地复种指数时空差异及动因. 地理学报, 2015, 70(4): 604-614. [44] 傅庆林, 俞劲炎, 王兆骞. 易旱农田生态系统养分循环的研究. 应用生态学报, 1993, 4(2): 146-149. [45] 黄国勤, 周丽华, 杨滨娟, 等. 红壤旱地不同复种方式养地效果. 生态学报, 2014, 34(18): 5191-5199. [46] 李隆, 李晓林, 张福锁, 等. 小麦大豆间作条件下作物养分吸收利用对间作优势的贡献. 植物营养与肥料学报, 2000, 6(2): 140-146. [47] 张久东, 包兴国, 曹卫东, 等. 间作绿肥作物对玉米产量和土壤肥力的影响. 中国土壤与肥料, 2013, (4): 43-47. [48] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005. [49] 赵建华, 孙建好, 樊廷录, 等. 玉米行距对大豆/玉米间作产量及种间竞争力的影响. 干旱地区农业研究, 2015, 33(3): 159-163, 183. [50] 吕越, 吴普特, 陈小莉, 等. 地上部与地下部作用对玉米/大豆间作优势的影响. 农业机械学报, 2014, 45(1): 129-136, 142. [51] 党小燕, 刘建国, 帕尼古丽, 等. 棉花间作模式中作物养分竞争吸收和积累动态的研究. 植物营养与肥料学报, 2013, 19(1): 166-173. [52] 李玉英, 胡汉升, 程序, 等. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31(6): 1617-1630. [53] 唐劲驰, Mboreha A, 佘丽娜, 等. 大豆根构型在玉米/大豆间作系统中的营养作用. 中国农业科学, 2005, 38(6): 1196-1203. [54] 张玲娥, 双文元, 云安萍, 等. 30年间河北省曲周县土壤速效钾的时空变异特征及其影响因素. 中国农业科学, 2014, 47(5): 923-933. [55] 李廷轩, 马国瑞, 王昌全, 等. 籽粒苋根际土壤及根系分泌物对矿物态钾的活化作用. 土壤通报, 2003, 34(1): 48-51. [56] 焦念元, 宁堂原, 杨萌珂, 等. 玉米花生间作对玉米光合特性及产量形成的影响. 生态学报, 2013, 33(14): 4324-4330. |