欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2016, Vol. 25 ›› Issue (10): 21-30.DOI: 10.11686/cyxb2015484

• 研究论文 • 上一篇    下一篇

黄土高原带状植被土壤理化性质空间分异特征

吕文强1, 党宏忠2, *, 王立1, 党汉瑾2, 何修道1   

  1. 1.甘肃农业大学林学院, 甘肃 兰州 730070;
    2.中国林业科学研究院荒漠化研究所, 北京 100091
  • 收稿日期:2015-10-21 出版日期:2016-10-20 发布日期:2016-10-20
  • 通讯作者: E-mail:hzdang@caf.ac.cn
  • 作者简介:吕文强(1990-),男,甘肃会宁人,在读硕士。 E-mail:wenqlv@126.com
  • 基金资助:
    十二五国家科技支撑计划课题“农田水土保持生物防护关键技术”(2011BAD31B02)资助

The spatial differentiation of soil properties under banded vegetation systems on the Loess Plateau

LV Wen-Qiang1, DANG Hong-Zhong2, *, WANG Li1, DANG Han-Jin2, HE Xiu-Dao1   

  1. 1.College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;
    2.Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
  • Received:2015-10-21 Online:2016-10-20 Published:2016-10-20

摘要: 为探究带状格局植被对土壤理化性质的影响及在空间上的差异,选取我国黄土高原柠条和山杏两种典型的带状植物篱为研究对象,并对其0~60 cm土层理化性质空间特征进行对比分析,结果表明,(1)柠条植物篱系统内各部位土壤容重、最大持水量、非毛管孔隙度、总孔隙度差异显著(P<0.05);山杏植物篱系统与梯田土壤毛管孔隙度和非毛管孔隙度差异显著(P<0.05);各部位间土壤水分物理性质因植物篱类型不同而分异明显。(2)两种带状植物篱系统土壤小团聚体(粒径0.25~2.00 mm)和微团聚体(粒径<0.25 mm)各部位分异显著(P<0.05),植物篱对粒径<2.00 mm的水稳性团聚体空间分异产生明显影响。(3)两种带状植物篱土壤砂粒(粒径0.05~2 mm)、粉粒(粒径0.002~0.05 mm)、粘粒(粒径<0.002 mm)含量差异均不显著(P>0.05),但植物篱能改变砂粒、粉粒、粘粒的相对组成。(4)柠条植物篱系统内各部位土壤有机质表现为带内(3.57%、Ⅱ级)>带后(3.09%、Ⅱ级)>带间(2.72%、Ⅲ级)>带前(2.64%、Ⅲ级),且各部位间分异明显;山杏植物篱系统土壤有机质表现为带间(1.47%、Ⅳ级)>带内(1.41%、Ⅳ级),分异不明显;不同植物篱类型间有机质分异不同。(5)植物篱土壤砂粒和水稳性小团聚体与有机质均呈极显著正相关关系(P<0.01);粉粒和粘粒与有机质均呈显著负相关关系(P<0.05);土壤容重、水稳性大团聚体、微团聚体均与土壤有机质无明显相关关系。

Abstract: In order to explore the effects of banded vegetation on soil properties and their spatial differentiation, an analysis was carried out on the Loess Plateau of the 0-60 cm soil layers of typical banded hedgerows made up of Caragana korshinskii and Armeniaca sibirica. The results showed that: (1) There were significant spatial differences in soil moisture physical properties within the hedgerow systems and these also varied across the different types of hedgerow. Soil bulk density, maximum water holding capacity, non-capillary porosity and total porosity varied significantly under the C. korshinskii hedgerow system (P<0.05), and soil capillary porosity and non-capillary porosity varied significantly under the A. sibirica system (P<0.05). (2) Under the two types of hedgerows, there were significant differences in the contents of water-stable micro-aggregates (<0.25 mm) and small aggregates (0.25-2 mm) (P<0.05). The spatial differentiation of water-stable aggregates with particle sizes less than 2 mm was obviously affected by the hedgerows. (3) There were no significant differences in the contents of soil sand (0.05-2 mm), silt (0.002-0.05 mm) and clay (<0.002 mm) under the two hedgerow systems, although hedgerows can change the relative composition of these three components. (4) There were differences in the content of soil organic matter under the two hedgerow systems. The content of soil organic matter was distributed as follows: for the C. korshinskii system, inner-band (3.57%, grade Ⅱ)>behind band (3.09%, grade Ⅱ)>inter-band (2.72%, grade Ⅲ)>in front of band (2.64%, grade Ⅲ); for the A. sibirica system, inter-band (1.47%, grade Ⅳ)>inner-band (1.41%, grade Ⅳ). (5) Soil sand and water-stable small aggregates showed a significant positive correlation with soil organic matter (P<0.01). Silt and clay showed a significant negative correlation with soil organic matter (P<0.05). There were no significant correlations between soil organic matter and either soil bulk density, water-stable macro-aggregates or micro-aggregates.