欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2016, Vol. 25 ›› Issue (8): 1-13.DOI: 10.11686/cyxb2015489

• 研究论文 •    下一篇

我国西北地区东部时间序列NDVI数据集重建方法比较研究

王玮, 郭铌*, 沙莎, 胡蝶, 王小平, 李耀辉   

  1. 中国气象局兰州干旱气象研究所,甘肃省干旱气候变化与减灾重点实验室,中国气象局干旱气候变化与减灾重点实验室,甘肃 兰州 730020
  • 收稿日期:2015-10-22 修回日期:2016-01-04 出版日期:2016-08-20 发布日期:2016-08-20
  • 通讯作者: guoni0531@126.com
  • 作者简介:王玮(1985-),男,甘肃兰州人,助理研究员。 E-mail: wangwei9969@163.com
  • 基金资助:

    甘肃省气象局气象科研项目(GSMAMs2016-10),中国博士后科学基金项目(2015M582734)和公益性行业(气象)科研专项(重大专项)(GYHY201506001-5)资助

Comparative studies of reconstruction methods for the long term NDVI dataset in the east of Northwest China

WANG Wei, GUO Ni*, SHA Sha, HU Die, WANG Xiao-Ping, LI Yao-Hui   

  1. Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province, Key Open Laboratory of Arid Change and Disaster Reduction of CMA, Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China
  • Received:2015-10-22 Revised:2016-01-04 Online:2016-08-20 Published:2016-08-20

摘要:

高质量、长时序归一化植被指数(NDVI)数据集不仅是连续监测陆地表面特征的基础,也是研究气候与陆地生态系统变化的重要参数。本研究以生态环境较为脆弱的西北地区东部为例,借助多种时间序列重建方法对LTDR NDVI数据集中的噪声进行拟合重建,并结合农业气象资料和高质量NDVI数据,对不同重建方法的拟合结果开展适用性评价分析,结果表明,1)下垫面类型是影响重建方法拟合效果的重要因素。根据不同植被类型或作物生长特点,每种重建方法对其噪声消除能力有所不同;2)在年均NDVI较高(NDVI≥0.3),且NDVI曲线具有明显季节变化的草地、林地以及牧草等作物种植区域内,经过D-L拟合重建的NDVI具有较高的保真能力和适应性;3)在年均NDVI较低(NDVI<0.3),且植被季节生长变化不明显或NDVI曲线不呈季节对称性变化的稀疏植被区,以及以冬小麦为典型作物种植的区域内,经过S-G滤波重建的NDVI数据表现出相对较好的保真能力和适应性。

Abstract:

A high-level time-series NDVI dataset is not only the basis for continuous monitoring of the land surface, but also an important tool for studying change related to climate and land use factors in terrestrial eco-systems. We reconstructed the noise component of the LTDR NDVI data for the east of Northwestern China where the ecosystem is fragile, using various time-series reconstruction methods. This paper use agrometeorological data and high-level NDVI data to evaluate the accuracy of different reconstruction methods. The results show that: 1) The vegetation or crop land cover is an important factor affecting fitted results of the various reconstruction methods. Each reconstruction method has a different noise reduction ability depending on differences in vegetation or crop growth characters; 2) The D-L reconstruction method has a better noise reduction ability and applicability in those areas of grassland, and woodland for which the annual average NDVI data is higher (NDVI≥0.3) and the NDVI curve has obvious seasonal changes; 3) The S-G reconstruction method has better fidelity ability and applicability in some areas of crop land in winter wheat and in areas of sparse vegetation for which annual average NDVI data are lower (NDVI<0.3) and where the NDVI curve have no obvious seasonal changes.