草业学报 ›› 2016, Vol. 25 ›› Issue (4): 212-221.DOI: 10.11686/cyxb2015520
卫万荣1, 麻安卫1, 何凯2, 张卫国1*, *
收稿日期:
2015-11-17
出版日期:
2016-04-20
发布日期:
2016-04-20
作者简介:
卫万荣(1988-),男,甘肃皋兰人,在读博士。E-mail:weiwr07@lzu.edu.cn
基金资助:
WEI Wan-Rong1, MA An-Wei1, HE Kai2, ZHANG Wei-Guo1, *
Received:
2015-11-17
Online:
2016-04-20
Published:
2016-04-20
摘要: 文章阐述了有关啮齿类动物群居起源相关的7个假说。资源防卫假说认为当资源(食物、水、庇护所)在时空上呈斑块状聚集分布时,群居有利于获取和保护资源。捕食风险假说认为群居能降低啮齿类被捕食的风险,因此在高风险栖境中群居较为普遍。社群温度调节假说认为在寒带和气候寒冷的地区群居有利于啮齿类减少能量消耗。旱区食物分布假说认为处于干旱生境中的啮齿类为减少挖掘洞道所需的能耗和弱化无收益觅食风险不得不形成群居。生活史约束假说认为体型小、脂肪贮存能力低、生长速率慢的啮齿类为能成功抚育后代而不得不形成群居。由于构建洞穴耗能巨大,因此窝巢共享假说认为啮齿类为减少能耗被迫共享洞系进而形成群居。亲代投资假说认为由于亲本对后代的持续性投资,因而群居的形成是由子代推迟扩散导致的。最后,本文对啮齿类群居未来研究的热点进行了探讨。
卫万荣, 麻安卫, 何凯, 张卫国. 啮齿类动物群居起源研究假说[J]. 草业学报, 2016, 25(4): 212-221.
WEI Wan-Rong, MA An-Wei, HE Kai, ZHANG Wei-Guo. The evolutionary causes of rodent group-living: Hypotheses[J]. Acta Prataculturae Sinica, 2016, 25(4): 212-221.
[1] Wang C L, Wang X W, Qi X G. Gregarious animals codetermination. Acta Ecologica Sinica, 2013, 33(16): 4857-4863. [2] Parrish J K, Hamner W M, Prewitt C T. Introduction-From individuals to aggregations: unifying properties, global framework, and the holy grails of congregation. In: Parrish J K, Hamner W M. Animal Groups in Three Dimensions[C]. Cambridge: Cambridge University Press, 1997: 1-13. [3] Krause J, Ruxton G D. Living in Groups[M]. Oxford: Oxford University Press. 2002. [4] Davies C R, Ayres J M, Dye C, et al . Malaria infection rate of Amazonian primates increases with body weight and group size. Functional Ecology, 1991, 5: 655-662. [5] Mller A P, Birkhead T R. Cuckoldry and sociality: a comparative study of birds. The American Naturalist, 1993, 142: 118-140. [6] Van Vuren D. Ectoparasites, fitness, and social behaviour of yellow-bellied marmots. Ethology, 1996, 102: 686-694. [7] Ebersperger L A, Blumstein T D. Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behavioral Ecology, 2006, 17: 410-418. [8] Bordes F, Blumstein D T, Morand S. Rodent sociality and parasite diversity. Biology Letters, 2007, 3(6): 692-694. [9] Burger J R, Adrian S, Luis A, et al . Sociality, exotic ectoparasites, and fitness in the plural breeding rodent Octodon degus . Behavioral Ecology and Sociobiology, 2012, 66: 57-66. [10] Nowak R M. Walker’s Mammals of the World (Sixth edition)[M]. Baltimore: The John Hopkins University Press, 1999. [11] Waterman J M. The social organization of the Cape ground squirrel ( Xerus inauris ; Rodentia:Sciuridae). Ethology, 1995, 101: 130-147. [12] Lacey E A, Braude S H, Wierczorek J R. Burrow sharing by colonial tuco-tucos ( Ctenomys sociabilis ). Journal of Mammalogy, 1997, 78: 556-562. [13] Burda H, Honeycutt R L, Begall S, et al . Are naked and common mole-rats eusocial and if so, why. Behavioral Ecology and Sociobiology, 2000, 47: 293-303. [14] Luis A, Ebensperger, Hernan C. On the evolution of group-living in the New world cursorial hystricognath rodents. Behavioral Ecology, 2001, 12(2): 227-236. [15] Ebensperger H. A review of the evolutionary causes of rodent group-living. Acta Theriologica, 2001, 46(2): 115-144. [16] Slobodchikoff C N. Resources and the evolution of social behavior. In: Price P W, Slobodchikoff C N, Gaud W S. A New Ecology: Novel Approaches to Interactive Systems[C]. New York: John Wiley & Sons, Inc., 1984: 227-251. [17] Ims R A. Responses in spatial organization and behaviour to manipulations of food resource in the vole Clethrionomys rufocanus. Journal of Animal Ecology, 1987, 56: 585-596. [18] Ostfeld R S. Territoriality and mating system of California voles. Journal of Animal Ecology, 1986, 55: 691-706. [19] Ims R A. Spatial clumping of sexually receptive females induces sharing among male voles. Nature, 1988, 335: 541-543. [20] Liu W, Wan X R, Zhong W Q, et al . Characteristics of seasonal reproduction in Mongolian gerbils ( Meriones unguiculatus ). Acta Theriologica Sinica, 2013, 33(1): 35-46. [21] Herrera E A, Macdonald D W. Resource utilization and territoriality in group-living capybaras ( Hydrochoerus hydrochaeris ). Journal of Animal Ecology, 1989, 58: 667-679. [22] Moses R A, Millar J S. Behavioural asymmetries and cohesive mother-offspring sociality in bushy-tailed wood rats. Canadian Journal of Zoology, 1992, 70: 597-604. [23] Lacher T E.The comparative social behavior of Kerodon rupestris and Galea spixii and the evolution of behavior in the Caviidae. Bulletin of Carnegie Museum of Natural History, 1981, 17: 1-71. [24] Taber A B, Macdonald D W. Spatial organization and monogamy in the mara Dolichotis patagonum . Journal of Zoology, London, 1992, 227: 417-438. [25] Nelson J. Determinants of male spacing behavior in microtines: an experimental manipulation of female spatial distribution and density. Behavioral Ecology and Sociobiology, 1995, 37: 217-223. [26] Blumstein D T, Foggin J M. Effects of vegetative variation on weaning success, overwinter survival, and social group density in golden marmots ( Marmota caudata aurea ). Journal of Zoology, London, 1997, 243: 57-69. [27] Shi J B. The progress of predation risk on population dynamics effect and mechanism. Chinese Journal of Zoology, 2013, 48(1): 150-158. [28] Lu J Q, Zhang Z B. Predation risk and its impact on animal foraging behavior. Chinese Journal of Ecology, 2004, 23(2): 66-72. [29] Ren X T, Shen G, Wang Z L, et al . Effects of road and grazing on spatiotemporal distribution of Brandt’s vole population in Xilin Gol grassland of Inner Mongolia. Chinese Journal of Ecology, 2011, 30(10): 2245-2249. [30] Creel S, Winnie J, Maxwell B. Elk alter habitat selection as an antipredator response to wolves. Ecology, 2005, 86(10): 3387-3397. [31] Fortin D, Beyer H L, Boyce M S. Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology, 2005, 86(5): 1320-1330. [32] Wei W H, Yang S M, Fan N C. The response of animal’s foraging behaviour to predation risk. Chinese Journal of Zoology, 2004, 39(3): 84-90. [33] Zhao L. Behavioral responses of two species passerine to predation risk during breeding period. Zoological Research, 2005, 26(2): 113-117. [34] Yang S M, Wei W H, Yin B F, et al . The predation risks of the plateau pika and plateau zokor and their survival strategies in the Alpine Meadow Ecosystem. Acta Ecologica Sinica, 2007, 27(12): 4972-4978. [35] Zhang W G, Jiang X L, Ma L X. The responses of behavior pattern of Ochotona curzoniae to population density. Pratacultural Science, 2007, 24(9): 79-82. [36] Zhang W G, Liu R, Jiang X L. Influence of risk sound signal on behavior pattern of pika. Acta Agrestla Sinica, 2010, 18(1): 115-120. [37] Winnie J J, Christianson D, Creel S. Elk decisionmaking rules are simplified in the presence of wolves. Behavioral Ecology and Sociobiology, 2006, 61(2): 277-289. [38] Christianson D, Creel S. A nutritionally mediated risk effect of wolves on elk. Ecology, 2010, 91(4): 1184-1191. [39] Dunbar R I M. Social systems as optimal strategy sets: the costs and benefits of sociality. In: Standen V, Foley R A. Comparative Socioecology: the Behavioural Ecology of Humans and Other Mammals[C]. Oxford: Blackwell Scientific Publications, 1989: 131-149. [40] Ebensperger L A, Wallem P K. Grouping increases the ability of the social rodent, Octodon degus , to detect predators when using exposed microhabitats. Oikos, 2002, 98(3): 491-497. [41] Jëdrzejewski W, Jêdrzejewska B, McNeish E. Hunting success of the weasel Mustela nivalis and escape tactics of forest rodents in Bialowieza National Park. Acta Theriologica, 1992, 37: 319-328. [42] Hoogland J L. The Black-tailed Prairie Dog: Social Life of a Burrowing Mammal[M]. Chicago: The University of Chicago Press, 1995: 1-557. [43] Hayes L D, Chesh A S, Castro R A, et al . Fitness consequences of group living in the degu Octodon degus , a plural breeder rodent with communal care. Animal Behaviour, 2009, 78(1): 131-139. [44] Hoogland J L. The evolution of coloniality in white-tailed and black-tailed prairie dogs (Sciuridae: Cynomys leucurus and C. ludovicianus ). Ecology, 1981, 62: 252-272. [45] Svendsen G E. Behavioral and environmental factors in the spatial distribution and population dynamics of a yellow-bellied marmot population. Ecology, 1974, 55: 760-771. [46] Yáber M C, Herrera E A. Vigilance, group size and social status in capybaras. Animal Behaviour, 1994, 48: 1301-1307. [47] Kildaw S D. The effect of group size manipulations on the foraging behavior of black-tailed prairie dogs. Behavioral Ecology, 1995, 6: 353-358. [48] Lagos P A, Meier A, Ortiz Tolhuysen L, et al . Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Canadian Journal of Zoology, 2009, 87: 1016-1023. [49] Macdonald D W. Dwindling resources and the social behaviour of capybaras ( Hydrochoerus hydrochaeris ). Journal of Zoology, London, 1981, 194: 371-391. [50] Sherman P W. The Limits of Ground Squirrel Nepotism[M]. Boulder: Westview Press, 1980: 505-544. [51] Manning C J, Dewsbury D A, Wakeland E K, et al . Communal nesting and communal nursing in house mice, Mus musculus domesticus . Animal Behaviour, 1995, 50: 741-751. [52] Wei W R, Zhang L F, Zhang W G, et al . A study on the burrow features and functions of plateau pika. Acta Prataculture Sinica, 2013, 22(6): 198-204. [53] Cassini M H, Galante M L. Foraging under predation risk in the wild guinea pig: the effect of vegetation height on habitat utilization. Annales Zoologici Fennici, 1992, 29: 285-290. [54] Qin J, Shi D Z. Population density fluctuation feature of brandt’s voles during the growing season of vegetation. Acta Agrestla Sinica, 2008, 16(1): 85-88. [55] Wywialowski A P. Habitat structure and predators: choices and consequences for rodent habitat specialists and generalists. Oecologia, 1987, 72: 39-45. [56] Longland W S, Price M V. Direct observations of owls and heteromyid rodents: can predation risk explain microhabitat use. Ecology, 1991, 72: 2261-2273. [57] Keller L, Perrin N. Quantifying the level of eusociality. Proceedings of the Royal Society London B, 1995, 260: 311-315. [58] Sharpe P B, Van H B. Influence of habitat on behavior of Townsend’s ground squirrels ( Spermophilus townsendii ). Journal of Mammalogy, 1998, 79: 906-918. [59] Treisman M. Predation and the evolution of gregariousness. Models for concealment and evasion. Animal Behaviour, 1975, 23: 779-800. [60] Pierce B M, Longland W S, Jenkins S H. Rattlesnake predation on desert rodents: microhabitat and species-specific effects on risk. Journal of Mammalogy, 1992, 73: 859-865. [61] Gilbert C, McCafferty D, Le Maho Y, et al . One for all for one: the energetic benefits of huddling in endotherms. Biological Reviews, 2010, 85: 545-569. [62] Gilbert C, McCafferty D J, Giroud S, et al . Private heat for public warmth: how huddling shapes individual thermogenic responses of rabbit pups. PloS one, 2012, 7(3): 33553-33553. [63] NuñЁez-Villegas M, Bozinovic F, Sabat P. Interplay between group size, huddling behavior and basal metabolism: an experimental approach in the social degu. The Journal of Experimental Biology, 2014, 217(6): 997-1002. [64] Séguy M, Perret M. Factors affecting the daily rhythm of body temperature of captive mouse lemurs ( Microcebus murinus ). Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology B, 2005, 175: 107-115. [65] Kotze J, Bennet N C, Scantlebury S. The energetic of huddling in two species of mole-rat (Rodentia: Bathergidae). Physiology Behavior, 2008, 93: 215-221. [66] Contreras L C. Bioenergetics of huddling: test of a psycho-physiological hypothesis. Journal of Mammalogy, 1984, 65: 256-262. [67] Bazin R C, MacArthur R A. Thermal benefits of huddling in muskrat ( Ondatra zibethicus ). Journal of Mammalogy, 1992, 73: 559-564. [68] Juan Kotze, Nigel C, Bennett M S. The energetics of huddling in two species of mole-rat (Rodentia: Bathyergidae). Physiology Behavior, 2008, 93: 215-221. [69] Bautista A, García T E, Martínez-Gómez, et al . Do newborn domestic rabbits Oryctolagus cuniculus compete for thermally advantageous positions in the litter huddle. Behavioral Ecology and Sociobiology, 2008, 62: 331-339. [70] Layne J N, Raymond M A V. Communal nesting of southern flying squirrels in Florida. Journal of Mammalogy, 1994, 75: 110-120. [71] Koprowski J L. Natal philopatry, communal nesting, and kinship in fox squirrels and gray squirrels. Journal of Mammalogy, 1996, 77: 1006-1016. [72] Madison D M, Fitzgerald R W, McShea W J. Dynamics of social nesting in overwintering meadow voles ( Microtus pennsylvanicus ): possible consequences for population cycling. Behavioral Ecology and Sociobiology, 1984, 15: 9-17. [73] Schradin M C, Schubert M, Pillay N. Winter huddling groups in the striped mouse. Canadian Journal of Zoology, 2006, 84: 693-698. [74] Arnold W. The evolution of marmot sociality: II. Costs and benefits of joint hibernation. Behavioral Ecology and Sociobiology, 1990, 27: 239-246. [75] Meier P T. Social organization of woodchucks ( Marmota marmota ). Behavioral Ecology and Sociobiology, 1992, 31: 393-400. [76] Getz L L, McGuire B. Communal nesting in prairie voles ( Microtus ochrogaster ): formation, composition and persistence of communal groups. Canadian Journal of Zoology, 1997, 75: 525-534. [77] Jefimow M, Marta G, Michal S. Social thermoregulation and torpor in the Siberian hamster. The Journal of Experimental Biology, 2011, 214: 1100-1108. [78] Armitage K B, Woods B C. Group hibernation does not reduce energetic costs of young yellow-bellied marmots. Physiological and Biochemical Zoology, 2003, 76(6): 888-898. [79] Jarvis J M, Sherman P W. Mammalian eusociality: a family affair. Trends in Ecology and Evolution, 1994, 9: 47-51. [80] Lovegrove B G. The evolution of eusociality in molerats (Bathyergidae): a question of risks, numbers, and costs. Behavioral Ecology and Sociobiology, 1991, 28: 37-45. [81] Lovegrove B G, Knight E A. Soil and burrow temperatures, and the resource characteristics of the social mole-rat Cryptomys damarensis (Bathyergidae) in the Kalahari desert. Journal of Zoology, London, 1988, 216: 403-416. [82] Jarvis J U M, Bennett N C, Spinks A C. Food availability and foraging by wild colonies of Damaraland mole-rats ( Cryptomys damarensis ): implications for sociality. Oecologia, 1998, 113: 290-298. [83] Sichilima A M, Bennett N C, Faulkes C G, et al . Evolution of African mole-rat sociality: burrow architecture, rainfall and foraging in colonies of the cooperatively breeding Fukomys mechowii . Journal of Zoology, 2008, 275(3): 276-282. [84] Jennifer U M. A comparison of the ecology of two populations of the common mole-rat, Cryptomys hottentotus hottentotus : the effect of aridity on food, foraging and body mass. Oecologia, 2000, 125: 341-349. [85] Spinks A C, Plagányi E E. Reduced starvation risks and habitat constraints promote cooperation in the common mole-rat, Cryptomys hottentotus hottentotus : a computer-simulated foraging model. Oikos, 1999, 85: 435-444. [86] Ganem G. Evolution of pacifism may have followed similar paths in Spalax and in the bathyergid mole-rats: a reply to H. Burda. Behavioral Ecology and Sociobiology, 1998, 42: 365-367. [87] Ganem G, Nevo E. Ecophysiological constraints associated with aggression, and evolution toward pacifism in Spalax ehrenbergi . Behavioral Ecology and Sociobiology, 1996, 38: 245-252. [88] Taraborelli P. Effect of group size on the vigilance and foraging behaviour of a social desert rodent, Microcavia australis (Rodentia, Caviidae). Ethology Ecology and Evolution, 2008, 3: 245-256. [89] ŠЁumbera R, Burda H, Chitaukali W N, et al . Silvery mole-rats ( Heliophobius argenteocinereus , Bathyergidae) change their burrow architecture seasonally. Naturwissenschaften, 2003, 90(8): 370-373. [90] Burda H, Kawalika M. Evolution of eusociality in the Bathyergidae: the case of the giant mole rats ( Cryptomys mechowi ). Naturwissenschaften, 1993, 80: 235-237. [91] Walter A. The evolution of marmot sociality: II. Costs and benefits of joint hibernation. Behavioral Ecology and Sociobiology, 1990, 27(4): 239-246. [92] Burda H. Constraints of pregnancy and evolution of sociality in mole-rats with special reference to reproductive and social patterns in Cryptomys hottentotus (Bathyergidae, Rodentia). Journal of Zoological Systematics and Evolutionary Research, 1990, 28(1): 26-39. [93] Becker M I, De Ioannes A E, León C, et al . Females of communally breeding rodent, Octodon degus , transfer antibodies to their offspring during pregnancy and lactation. Reprod Immunol, 2007, 74: 68-77. [94] Hart B L. Behavioral adaptations to parasites: an ethological approach. International Journal for Parasitology, 1992, 78: 256-265. [95] Bennett N C, Jarvis J U M, Cotterill F P D. The colony structure and reproductive biology of the afrotropical Mashona mole-rat, Cryptomys darlingi . Journal of Zoology, London, 1994, 234: 477-487. [96] Nowak M A, Tarnita C E, Wilson E O. The evolution of eusociality. Nature, 2010, 466: 1057-1062. [97] Kinlaw A. A review of burrowing by semi-fossorial vertebrates in arid environments. Journal of Arid Environments, 1999, 41: 127-145. [98] White A M, Cameron E Z. Communal nesting is unrelated to burrow availability in the common warthog. Animal Behaviour, 2009, 77: 87-94. [99] Ebensperger L A, Bozinovic F. Energetics and burrowing behaviour in the semifossorial degu, Octodon degus (Rodentia: Octodontidae). Journal of Zoology, London, 2000, 252: 179-186. [100] King J A. Historical ventilations on a prairie dog town. The Biology of Ground-dwelling Squirrels[M]. Lincoln, NE: University of Nebraska Press, 1984: 447-456. [101] Garza J C, Dallas J, Boursot P, et al . Social structure of the mound-building mouse Mus spicilegus revealed by genetic analysis with microsatellites. Molecular Ecology, 1997, 6: 1009-1017. [102] Ebensperger L A, Chesh A S, Castro R A, et al . Burrow limitations and group living in the communally rearing rodent, Octodon degus . Journal of Mammalogy, 2011, 92(1): 21-30. [103] Ebensperger L A. Cofré F. On the evolution of group-living in the New World cursorial hystricognath rodents. Behavioral Ecology, 2001, 12: 227-236. [104] Jeppsson B. Effects of density and resources on the social system of water voles. Social Systems and Population Cycles in Voles[M]. Birkhauser Basel, 1990: 213-226. [105] Taraborelli P. Is communal burrowing or burrow sharing a benefit of group living in the lesser cavy Microcavia australis . Acta theriologica, 2009, 54(3): 249-258. [106] Nevo E. Mammalian evolution underground. The ecological-genetic-phenetic interfaces. Acta Theriologica, 1995, 3: 9-31. [107] Armitage K B. Resources and social organization of ground-dwelling squirrels. The Ecology of Social Behavior, 1998, 9(1): 8-19. [108] Blumstein D T, Armitage K B. Life history consequences of social complexity: a comparative study of ground-dwelling sciurids. Behavioral Ecology, 1998, 9: 8-19. [109] Armitage K B. Evolution of sociality in marmots. Journal of Mammalogy, 1999, 80: 1-10. [110] Smorkatcheva V, Kumaitova A R. Delayed dispersal in the Zaisan mole vole ( Ellobius tancrei ): helping or extended parental investment. Journal Ethology, 2014, 32: 53-61. [111] Van Vuren D, Armitage K B. Duration of snow cover and its influence on life-history variation in yellow-bellied marmots. Canadian Journal of Zoology, 1991, 69: 1755-1758. [112] Rayor L S. Effects of habitat quality on growth, age of first reproduction, and dispersal in Gunnison’s prairie dogs ( Cynomys gunnison i). Canadian Journal of Zoology, 1985, 63: 2835-2840. [1] 王程亮, 王晓卫, 齐晓光. 群居动物中的共同决策. 生态学报, 2013, 33(16): 4857-4863. [20] 刘伟, 宛新荣, 钟文勤, 等.长爪沙鼠种群繁殖的季节性特征. 兽类学报, 2013, 33(1): 35-46. [27] 石建斌. 捕食风险的种群动态效应及其作用机理研究进展. 动物学杂志, 2013, 48(1): 150-158. [28] 路纪琪, 张知彬. 捕食风险及其对动物觅食行为的影响. 生态学杂志, 2004, 23(2): 66-72. [29] 任修涛, 沈果, 王振龙, 等. 道路和放牧对锡林郭勒草原布氏田鼠种群时空分布的影响. 生态学杂志, 2011, 30(10): 2245-2249. [32] 魏万红, 杨生妹, 樊乃昌. 动物觅食行为对捕食风险的反应. 动物学杂志, 2004, 39(3): 84-90. [33] 赵亮.繁殖期两种百灵科鸟类对捕食风险的行为响应. 动物学研究, 2005, 26(2): 113-117. [34] 杨生妹, 魏万红, 殷宝法, 等. 高寒草甸生态系统中高原鼠兔和高原鼢鼠的捕食风险及生存对策. 生态学报, 2007, 27(12): 4972-4978. [35] 张卫国, 江小雷, 马隆喜. 高原鼠兔行为格局对种群密度的响应. 草业科学, 2007, 24(9): 79-82. [36] 张卫国, 刘蓉, 江小雷. 风险性声讯信号对高原鼠兔行为模式的影响. 草地学报, 2010, 18(1): 115-120. [52] 卫万荣, 张灵菲, 张卫国, 等. 高原鼠兔洞系特征及功能研究. 草业学报, 2013, 22(6): 198-204. [54] 秦姣, 施大钊. 植物生长期布氏田鼠种群密度波动特征. 草地学报, 2008, 16(1): 85-88. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||