[1] Xu P, Hu Z Z, Zhu J Z, et al . Grassland Resource Survey and Planning[M]. Beijing: China Agriculture Press, 2000. [2] Dube T, Mutanga O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 36-46. [3] Gu Y, Wylie B K. Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations. Remote Sensing of Environment, 2015, 171: 291-298. [4] Mutanga O, Skidmore A K, van Wieren S. Discriminating tropical grass ( Cenchrus ciliaris ) canopies grown under different nitrogen treatments using spectroradiometry. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57(4): 263-272. [5] Mutanga O, Skidmore A K, Kumar L, et al . Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain. International Journal of Remote Sensing, 2005, 26(6): 1093-1108. [6] Mutanga O, Skidmore A K. Red edge shift and biochemical content in grass canopies. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(1): 34-42. [7] Mutanga O, Skidmore A K. Hyperspectral band depth analysis for a better estimation of grass biomass ( Cenchrus ciliaris ) measured under controlled laboratory conditions. International Journal of Applied Earth Observation and Geoinformation, 2004, 5(2): 87-96. [8] Ramoelo A, Cho M A, Mathieu R, et al . Estimating grass nutrients and biomass as an indicator of rangeland (forage) quality and quantity using remote sensing in Savanna ecosystems[C]//9th International Conference of the African Association of Remote Sensing and the Environment. Eljadida, Morocco: AARSE, 2012. [9] Knox N M, Skidmore A K, Prins H H T, et al . Dry season mapping of savanna forage quality, using the hyperspectral Carnegie Airborne Observatory sensor. Remote Sensing of Environment, 2011, 115(6): 1478-1488. [10] Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999, 67(3): 267-287. [11] Ramoelo A, Cho M A, Mathieu R, et al . Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. International Journal of Applied Earth Observation and Geoinformation, 2014, 43: 43-54. [12] Wang X, Liu S J, Jia H F, et al . Study on the nutrition of alpine meadow based on hyperspectral data. Spectroscopy and Spectral Analysis, 2012, 32(10): 2780-2784. [13] Foulkes J N, White I A, Sparrow B D, et al . AusPlots-Rangelands monitoring site stratification and survey methods within TERN (Terrestrial Ecosystem Research Network)[R]. Discussion Paper, Terrestrial Ecosystem Research Network, Adelaide, 2011. [14] Tong Q X, Zhang B, Zheng L F. Hyperspectral Remote Sensing-Theory, Technology and Application[M]. Beijing: Higher Education Press, 2006. [15] Bai J W, Zhao Y C, Zhang B, et al . Study on the classification methods of the hyperspectral image based on the continuum removed. Computer Engineering and Applications, 2003, 39(13): 88-90. [16] Pu R L, Gong P. Hyperspectral Remote Sensing and Application[M]. Beijing: Higher Education Press, 2000. [17] Wang X Z, Huang J F, Li Y M, et al . The study on multi-spectral remote sensing estimation models about LAI of rice. Remote Sensing Technology and Application, 2003, 18(2): 57-65. [18] Fu Y B. Main Physiological Indicators of Hyperspectral Inversion in Alfalfa Seed Production[D]. Vrumchi: Xinjiang Agricultural University, 2013. [19] Ramoelo A, Skidmore A K, Cho M A, et al . Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 82: 27-40. [20] Mutanga O. Hyperspectral Remote Sensing of Tropical Grass Quality and Quantity[D]. Enschede: Wageningen University, 2004: 111. [21] Clevers J, Büker C. Feasibility of the red edge index for the detection of nitrogen deficiency[C]//Proceedings of the 5th International Colloquium - Physical Measurements and Signatures in Remote Sensing, Courchevel. France: European Space Agency, 1991. [22] 许鹏, 胡自治, 朱进忠, 等.草地资源调查规划学[M]. 北京: 中国农业出版社, 2000. [23] 王迅, 刘书杰, 贾海峰, 等. 基于高光谱数据的高寒草地营养状况的研究. 光谱学与光谱分析, 2012, 32(10): 2780-2784. [24] 童庆禧, 张兵, 郑兰芬. 高光谱遥感: 原理, 技术与应用[M]. 北京: 高等教育出版社, 2006. [25] 白继伟, 赵永超, 张兵, 等. 基于包络线消除的高光谱图像分类方法研究. 计算机工程与应用, 2003, 39(13): 88-90. [26] 浦瑞良, 宮鹏. 高光谱遥感及其应用[M]. 北京: 高等教育出版社, 2000. [27] 王秀珍, 黄敬峰, 李云梅, 等. 水稻叶面积指数的多光谱遥感估算模型研究. 遥感技术与应用, 2003, 18(2): 57-65. [28] 付彦博. 制种紫花苜蓿主要生理指标高光谱反演[D]. 乌鲁木齐: 新疆农业大学, 2013. |