[1] Li B. Grassland resources status, problems and countermeasures of our country. Bulletin of Chinese Academy of Science, 1997, 1: 49-51. [2] Yan Z Q, Qi Y C, Dong Y S, et al . Nitrogen cycling in grassland ecosystems in response to climate change and human activities. Acta Prataculturae Sinica, 2015, 24(6): 279-292. [3] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627. [4] Yan Y C, Wang X, Yang G X, et al . Review on mechanism of fine soil particles increase in enclosed grassland. Journal of Desert Research, 2011, 31(5): 1162-1166. [5] Stavi I, Eugene D U, Hanoch L, et al . Grazing induced spatial variability of soil bulk density and content of water moisture, organic carbon and calcium carbonate in a semiarid rangeland. Catena, 2008, 75(3): 288-296. [6] Fornara D A, Bardgett R, Steinbeiss S, et al . Plant effects on soil N mineralization are mediated by the composition of multiple soil organic fractions. Ecology Research, 2011, 26: 201-208. [7] Knops J M H, Bradley K L, Wedin D A. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 2002, 5(3): 454-466. [8] Lei X D, Peng C H, Tian D L, et al . Meta-analysis method and its application in global change. Chinese Science Bulletin, 2006, 51(22): 2587-2597. [9] McSherry M E, Ritchie M E. Effects of grazing on grassland soil carbon: a global review. Global Change Biology, 2013, 19(5): 1347-1357. [10] Bai Y F, Wu J G, Clark C M, et al . Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 2012, 49(6): 1204-1215. [11] Gao Y H. Study on Carbon and Nitrogen Distribution Pattern and Cycling Process in an Alpine Meadow Ecosystem under Different Grazing Intensity[D]. Chengdu: Institute of Chengdu Biology of Chinese Academy of Science, 2006 [12] Bagchi S, Ritchie M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters, 2010, 13(8): 959-968. [13] Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology. Ecology, 1999, 80: 1150-1156. [14] Luo Y Q, Hui D F, Zhang D Q. Elevated CO 2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology, 2006, 87(1): 53-63. [15] Yuan J L, Jiang X L, Huang W B, et al . Effects of grazing intensity and grazing season on plant species diversity in alpine meadow. Acta Prataculturae Sinica, 2004, 13(3): 16-21. [16] Zhang T, Wong Y, Yao F J, et al . Effect of grazing intensity on ecological stoichiometry of Deyeuxia angustifolia and meadow soil. Acta Prataculturae Sinica, 2014, 23(2): 20-28. [17] Wu H, Wiesmeier M, Yu Q, et al . Labile organic c and n mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology & Fertility of Soils, 2011, 48(3): 305-313. [18] Liu N, Kan H M, Yang G W, et al . Changes in plant, soil, and microbes in a typical steppe from simulated grazing: explaining potential change in soil C. Ecological Monographs, 2015, 85(2): 269-286. [19] Knops J M H, Tilman D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology, 2000, 81(1): 88-98. [20] Schuman G E, Reeder J D, Manley J T, et al . Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecological Applications, 1999, 9(1): 65-71. [21] Detling J K, Dyer M I, Winn D T. Net photosynthesis, root respiration and regrowth of Boutelous gracilis following simulated grazing. Oecologia, 1979, 41(2): 127-134. [22] Davidson R L. Root Systems-the Forgotten Component of Pastures[M]. Australia: CSIRO, East Melbourne, 1978: 86-94. [23] Holland E A, Detling J K. Plant response to herbivory and belowground nitrogen cycling. Ecology, 1990, 71(3): 1040-1049. [24] Montane F, Romanya J, Rovira P, et al . Aboveground litter quality changes may drive soil organic carbon increase after shrub encroachment into mountain grasslands. Plant and Soil, 2010, 337: 151-165. [25] Thiessen S, Gleixner G, Wutzler T, et al . Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass: an incubation study. Soil Biology and Biochemistry, 2013, 57: 739-748. [26] Belnap J, Gillette D A. Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. Journal of Arid Environments, 1998, 39: 133-142. [27] Belnap J, Lange O L. Biological Soil Crusts: Structure, Function, and Management[M]. Berlin, Germany: Springer-Verlag, 2001. [28] Neff J C, Reynolds R L, Belnap J, et al . Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecological Applications, 2005, 15(1): 87-95. [29] Caravaca F A L, Albaladejo J. Organic matter, nutrient content and cation exchange capacity in fine fractions from semiarid calcareous soils. Geoderma, 1999, 93: 161-176. [30] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 1992, 44: 81-99. [31] Liu S H, Fang J Y. Effect factors of soil respiration and the temperature’s effects on soil respiration in the global scale. Acata Ecologica Sinica, 1997, 17: 469-476. [32] Chen Q S, Li L H, Han X G, et al . Effects of water content on soil respiration and the mechanisms. Acata Ecologica Sinica, 2003, 23: 972-978. [33] Zhang Z H, Duan J H, Wang S P, et al . Effects of land use and management on ecosystem respiration in alpine meadow on the Tibetan Plateau. Soil and Tillage Research, 2012, 124(4): 161-169. [34] Landsberg J J, Gower S T. Applications of Physiological Ecology to Forest Management[M]. San Diego, CA, USA: Academic Press, 1997. [35] Raich J W, Tufekcioglu A. Vegetation and soil respiration: correlations and controls. Biogeochemistry, 2000, 48(1): 71-90. [36] Tu L H, Hu T X, Huang L H, et al . Response of soil respiration to simulated nitrogen deposition in pleioblastus amarus forest, rainy area of west China. Chinese Journal of Plant Ecology, 2009, 33: 728-738. [37] Thomey M L, Collins S L, Vargas R, et al . Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Global Change Biology, 2011, 17: 1505-1515. [38] Deng Q, Liu S Z, Liu X J, et al . Contributions of litter-fall to soil respiration and its affacting factors in southern subtropical forests of China. Advances in Earth Science, 2007, 22: 976-986. [39] Chapin III F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology[M]. New York, NY, USA: Springer, 2002. [40] Gong J R, Wang Y, Liu M, et al . Effects of land use on soil respiration in the temperate steppe of Inner Mongolia, China. Soil & Tillage Research, 2014, 144(4): 20-31. [41] Gill R A, Burke I C, Milchunas D G, et al . Relationship between root biomass and soil organic matter pools in the shortgrass steppe of eastern Colorado. Ecosystems, 1999, 2: 226-236. [42] Luyssaert S, Inglima I, Jung M, et al . CO 2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 2007, 13: 2509-2537. [43] Dong Q M, Zhao X Q, Ma Y S, et al . Effects of yak grazing intensity on quantitative characteristics of plant community in a two-seasonal rotation pasture in Kobresia Parva meadow. Chinese Journal of Ecology, 2011, 30(10): 2233-2239. [44] 李博. 我国草地资源现状问题及对策. 中国科学院院刊, 1997, 1: 49-51. [45] 闫钟清, 齐玉春, 董云社, 等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制. 草业学报, 2015, 24(6): 279-292. [46] 闫玉春, 王旭, 杨桂霞, 等. 退化草地封育后土壤细颗粒增加机理探讨及研究展望. 中国沙漠, 2011, 31(5): 1162-1166. [47] 雷相东, 彭长辉, 田大伦, 等. 整合分析(Meta-analysis)方法及其在全球变化中的应用研究. 科学通报, 2006, 51(22): 2587-2597. [48] 高永恒. 不同放牧强度下高山草甸生态系统碳氮分布格局和循环过程研究[D]. 成都: 中国科学院成都生物所, 2006. [49] 袁建立, 江小蕾, 黄文冰, 等. 放牧季节及放牧强度对高寒草地植物多样性的影响. 草业学报, 2004, 13(3): 16-21. [50] 张婷, 翁月, 姚凤娇, 等. 放牧强度对草甸植物小叶章及土壤化学计量比的影响. 草业学报, 2014, 23(2): 20-28. [51] 刘绍辉, 方精云. 土壤呼吸的影响因素及全球尺度下温度的影响. 生态学报, 1997, 17: 469-476. [52] 陈全胜, 李凌浩, 韩兴国, 等. 水分对土壤呼吸的影响及机理. 生态学报, 2003, 23: 972-978. [53] 涂利华, 胡庭兴, 黄立华, 等. 华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应. 植物生态学报, 2009, 33: 728-738. [54] 邓琦, 刘世忠, 刘菊秀, 等. 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素. 地球科学进展, 2007, 22: 976-986. [55] 董全民, 赵新全, 马玉寿, 等. 牦牛放牧强度对小嵩草草甸两季轮牧草场植物群落数量特征的影响. 生态学杂志, 2011, 30(10): 2233-2239. |