[1] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 2008, 59: 651-681. [2] Hasegawa P M. Sodium (Na + ) homeostasis and salt tolerance of plants. Environmental and Experimental Botany, 2013, 92: 19-31. [3] Hammer E C, Nasr H, Pallon J, et al . Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza, 2011, 21: 117-129. [4] Hajiboland R. Role of Arbuscular Mycorrhiza in Amelioration of Salinity[M]// Salt Stress in Plants. New York: Springer, 2013: 301-354. [5] Rengasamy P. Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 2010, 37: 613-620. [6] Munns R, James R A, Lauchli A. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 2006, 57: 1025-1043. [7] Grattan S R, Grieve C M. Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 1999, 78: 127-157. [8] Teakle N L, Tyerman S D. Mechanisms of Cl - transport contributing to salt tolerance. Plant, Cell and Environment, 2010, 33: 566-589. [9] Evelin H, Giri B, Kapoor R. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl stressed Trigonella foenum-graecum . Mycorrhiza, 2012, 22: 203-217. [10] Li J, Bao S Q, Zhang Y H, et al . Paxillus involutus strains MAJ and NAU mediate K + /Na + homeostasis in ectomycorrhizal Populus×canescens under sodium chloride stress. Plant Physiology, 2012, 159: 1771-1786. [11] Tavakkoli E, Rengasamy P, McDonald G K. High concentrations of Na + and Cl - ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 2010, 61(15): 4449-4459. [12] Bao S D. Soil Agro-chemistrical Analysis[M]. Beijing: China Agriculture Press, 2000. [13] Tang C X. Factors affecting soil acidification under legumes I. Effect of potassium supply. Plant and Soil, 1998, 199: 275-282. [14] Flowers T J, Yeo A R. Ion Relations of Salt Tolerance[M]// Baker D A, Hall J L, eds. Solute Transport in Plant Cells and Tissues. New York: John Wiley and Sons, 1988: 392-416. [15] Serrano R, Mulet J M, Rios G, et al . A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 1999, 50: 1023-1036. [16] Li X T, Cao J, Wei X J, et al . Effect of extended exposure to NaCl stress on the growth, ion distribution and photosynthetic characteristics of malting barley ( Hordeum vulgare ). Acta Prataculturae Sinica, 2013, 22(6): 108-116. [17] Chen H Z, Ladatko N, Zhu D F, et al . Absorption and distribution of Na + and K + in rice seedling under salt stress. Chinese Journal of Plant Ecology, 2007, 31(5): 937-945. [18] Wang D, Yuan F, Wang B S, et al . Response of plant biofuel hybrid pennisetum to NaCl stress and its salinity threshold. Chinese Journal of Plant Ecology, 2012, 36(6): 572-577. [19] Tester M, Davenport R. Na + tolerance and Na + transport in higher plants. Annals of Botany, 2003, 91: 503-527. [20] Shabala S, Cuin T A. Potassium transport and plant salt tolerance. Physiologia Plantarum, 2007, 133: 651-669. [21] Fuchs I, Stölzle S, Ivashikina N, et al . Rice K + uptake channel OsAKT1 is sensitive to salt stress. Planta, 2005, 221: 212-221. [22] Shokri S, Maadi B. Effect of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. Journal of Agronomy, 2009, 8(2): 79-83. [23] Yang X J, Zhao X, Shi Y, et al . Effects of salt stress on ion distribution in different Echinops gmelini organs. Acta Prataculturae Sinica, 2013, 22(4): 116-122. [24] Li P F, Bai W B, Yang Z C. Effects of NaCl stress on ions absorption and transportation and plant growth of tall fescue. Scientia Agricultura Sinica, 2005, 38(7): 1458-1565. [25] Kopittke P M. Interactions between Ca, Mg, Na and K: alleviation of toxicity in saline solutions. Plant Soil, 2012, 352(1): 353-362. [26] Li H Y, Zheng Q S, Jiang C Q, et al . A comparison of stress effects between chloridion and sodium ion on grain amaranth seedlings under NaCl stress. Acta Prataculturae Sinica, 2010, 19(5): 63-70. [27] Bader B, Aissaoui F, Kmicha I, et al . Effects of salinity stress on water desalination, olive tree ( Olea europaea L. cvs ‘Picholine’, ‘Meski’ and ‘Ascolana’) growth and ion accumulation. Desalination, 2015, 364: 46-52. [28] Reginato M, Sosa L, Llanes A, et al . Growth responses and ion accumulation in the halophytic legume Prosopis strombulifera are determined by Na 2 SO 4 and NaCl. Plant Biology, 2014, 16(2): 97-106. [29] Maathuis F J M. Sodium in plants: perception, signalling, and regulation of sodium fluxes. Journal of Experimental Botany, 2014, 65(3): 849-858. [30] Zheng Q S, Liu Z P, Liu Y L, et al . Effects of salt and water stresses on growth and ionic absorption and distribution in Salicornia europaea , Aloe vera and Helianthus annuus seedlings. Journal of Nanjing Agricultural University, 2004, 27(2): 16-20. [31] Bhandal I S, Malik C P. Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. International Review of Cytology, 1988, 110: 205-254. [32] Zhang J L, Li H R, Guo S Y, et al . Research advances in higher plants adaptation to salt stress. Acta Prataculturae Sinica, 2015, 24(12): 220-236. [33] Ning J F, Liu Z P, Liu L, et al . Study of effect of NaCl stress on Aloe vera . Acta Agriculturae Boreal-Sinica, 2005, 20(5): 70-75. [34] Li Y Q, Fang S Z, Yao R L, et al . Effects of NaCl stress on ion distribution, absorption and transportation in Cyclocarya paliurus seedling from different provenances. Journal of Plant Resources and Environment, 2007, 16(4): 29-33. [35] Zhu H S, Fang Z H, Yang G Y, et al . Biomass formation and selective absorption for K + /Na + of Elymus dahuricus grown in different saline grassland. Acta Agrestia Sinica, 2010, 18(3): 383-387. [36] Liu J, Feng C Q, Jin J, et al . Study on absorption and transport selectivity of saltions of Populus alba var. pyamidals . Journal of Arid Land Resources and Environment, 2007, 21(11): 118-122. [37] Zhang K, Zhang D Y, Wang L, et al . Study on the ionic absorption and transport in Salicornia europaea L. growing in natural habitats in Xinjian. Arid Zone Research, 2007, 24(4): 480-486. [12] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. [16] 李先婷, 曹靖, 魏晓娟, 等. NaCl渐进胁迫对啤酒大麦幼苗生长、离子分配和光合特性的影响. 草业学报, 2013, 22(6): 108-116. [17] 陈惠哲, Ladatko N, 朱德峰, 等. 盐胁迫下水稻苗期Na + 和K + 吸收与分配规律的初步研究. 植物生态学报, 2007, 31(5): 937-945. [18] 王殿, 袁芳, 王宝山, 等. 能源植物杂交狼尾草对NaCl胁迫的响应及其耐盐阈值. 植物生态学报, 2012, 36(6): 572-577. [23] 杨小菊, 赵昕, 石勇, 等. 盐胁迫对砂蓝刺头不同器官中离子分布的影响. 草业学报, 2013, 22(4): 116-122. [24] 李品芳, 白文波, 杨志成. NaCl胁迫对苇状羊茅离子吸收与运输及其生长的影响. 中国农业科学, 2005, 38(7): 1458-1565. [26] 李洪燕, 郑青松, 姜超强, 等. 籽粒苋幼苗对不同盐离子胁迫响应的比较研究. 草业学报, 2010, 19(5): 63-70. [30] 郑青松, 刘兆普, 刘友良, 等. 盐和水分胁迫对海蓬子、芦荟、向日葵幼苗生长及其离子吸收分配的效应. 南京农业大学学报, 2004, 27(2): 16-20. [32] 张金林, 李惠茹, 郭姝媛, 等. 高等植物适应盐逆境研究进展. 草业学报, 2015, 24(12): 220-236. [33] 宁建凤, 刘兆普, 刘玲, 等. NaCl对库拉索芦荟的胁迫效应研究. 华北农学报, 2005, 20(5): 70-75. [34] 李彦强, 方升佐, 姚瑞玲, 等. NaCl胁迫对不同种源青钱柳幼苗离子分配、吸收与运输的影响. 植物资源与环境学报, 2007, 16(4): 29-33. [35] 朱慧森, 方志红, 杨桂英, 等. 不同盐碱化草地披碱草生物量形成及根系对K + 、Na + 的选择性吸收. 草地学报, 2010, 18(3): 383-387. [36] 刘静, 冯长青, 金娟, 等. 新疆杨对盐分离子吸收选择性和运输选择性的研究. 干旱区资源与环境, 2007, 21(11): 118-122. [37] 张科, 张道远, 王雷, 等. 自然生境下盐角草的离子吸收-运输特征. 干旱区研究, 2007, 24(4): 480-486. |