[1] Zhang F, Huang F Q, Xiao X P, et al . Short-term influences of winter crops on microbial biomass carbon, microbial biomass nitrogen and C mic -to-C org in a paddy soil. Acta Ecological Sinica, 2009, 29(2): 734-739. [2] Tang J W, Wei J B, Xu H Q, et al . The Moving Chicken Coop for Poultry Grazing in Farmland: China, ZL201520337464.1[P]. 2015-9-23. [3] Zhao T, Jiang Y L, Yan H, et al . Effects of different aspects on soil microbial biomass and dissolved organic carbon of the loess hilly area. Environmental Science, 2013, 34(8): 3223-3230. [4] Zhao X L, Chen H T, Lv G H, et al . Advances in soil microbial biomass. Journal of Meteorology and Environment, 2006, 22(4): 68-72. [5] Chen A L, Wang K R, Xie X L. Effects of fertilization systems and nutrient recycling on microbial biomass C, N and P in a reddish paddy soil. Journal of Agro-Environment Science, 2005, 24(6): 1094-1099. [6] Goyal Sneh C K, Mundra M C, Kapoor K K. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biology and Fertility of Soils, 1999, 29: 196-200. [7] Gao J S, Cao W D, Li D C, et al . Effects of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field. Acta Ecologica Sinica, 2011, 31(16): 4542-4548. [8] Moore J M, Susanne K, Tabatabail M A. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biology and Fertility of Soils, 2000, 31: 200-210. [9] Zang Y F, Hao M D, Zhang L Q, et al . Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecologica Sinica, 2015, 35(5): 1445-1451. [10] Jia W, Zhou H P, Xie W Y, et al . Effects of long-term inorganic fertilizer combined with organic manure on microbial biomass C, N and enzyme activity in cinnamon soil. Plant Nutrition and Fertilizer Science, 2008, 14(4): 700-705. [11] Li Z, Liu G S, Ye X F, et al . Effects of different years of burying green manure on soil microbial biomass C, N and C, N content in soil. Acta Agriculturae Jiangxi, 2010, 22(4): 62-65. [12] Pan F X, Lu J W, Liu W, et al . Study on characteristics of decomposing and nutrients releasing of three kinds of green manure crops. Plan Nutrition and Fertilizer Science, 2011, 17(1): 216-223. [13] Jing D W, Xing S J. Effects of chicken manure mixed with inorganic fertilizer on soil enzyme activities, microbial biomass C and N at rhizosphere of poplar seedlings. Plant Nutrition and Fertilizer Science, 2013, 19(2): 455-461. [14] Brookes P C, Landman A, Puden G, et al . Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17: 837-842. [15] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 1987, 19: 703-707. [16] Jenkinson D S, Brookes P C, Powlson D S. Measuring soil microbial biomass. Soil Biology and Biochemistry, 2004, 36: 5-7. [17] Li S Q, Li S X. Effects of organic materials on maintaining soil microbial biomass Nitrogen. Acta Ecologica Sinica, 2001, 21(1): 136-142. [18] Pei X X. Effect of Long-term Fertilization on Diversity of Soil Microbiol Community Structure under Different Cropping Systems[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. [19] Xu Y C, Shen Q R, Ran W. Effects of zero-tillage and application of manure on soil microbial biomass C, N and P after sixteen years of cropping. Acta Pedologica Sinica, 2002, 39(1): 89-96. [20] Liu G S, Luo Z B, Wang Y, et al . Effect of green manure application on soil properties and soil microbial biomass in tobacco field. Journal of Soil and Water Conservation, 2006, 20(1): 95-98. [21] Yan Z L, Fang Y, Chen J C, et al . Effect of turning over Chinese milk vetch ( Astragalus sinicus L.) on soil nutrients and microbial properties in paddy fields. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1151-1160. [22] Han X R, Zheng G D, Liu X Y, et al . Dynamics sources and supply characteristic of microbial biomass nitrogen in soil applied with manure and fertilizer. Scientia Agricultura Sinica, 2007, 40(4): 765-772. [23] Witter E, Mortensson A M, Gareia F V. Size of the soil microbial biomass in a long-term field experiment as affected by different N-fertilizers and organic manures. Soil Biology & Biochemistry, 1993, 25: 659-669. [24] Yang Z P, Gao J S, Zheng S X, et al . Effects of long-term winter planting-green manure on microbial properties and enzyme activities in reddish paddy soil. Soils, 2011, 43(4): 576-583. [25] Liu S L, Xiao H A, Tong C L, et al . Microbial biomass C, N and P and their responses to application of inorganic and organic fertilizers in subtropical paddy soils. Research of Agricultural Modernization, 2003, 24(4): 278-283. [26] Song R, Wu C S, Mou J M, et al . Effects of maize stubble remaining in field on dynamics of soil microbial biomass C and soil enzyme activities. Chinese Journal of Applied Ecology, 2002, 13(3): 303-306. [27] Luo L F. Effect of Controlled Release Nitrogen Fertilizer on Soil Microbiological Characteristics and Nitrogen Fertility[D]. Changsha: Hunan Agricultural University, 2008. [28] Zeng L S, Liao M, Huang C Y, et al . Variation of soil microbial biomass and enzyme activities at different developmental stages in rice. Chinese Journal of Rice Science, 2005, 19(5): 441-446. [29] Gao S J, Cao W D, Bai J S, et al . Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil. Acta Pedologica Sinica, 2015, 52(4): 902-910. [30] Ni J Z, Xu J M, Xie Z M, et al . Contents of wsoc and characteristics of its composition under different fertilization systems. Acta Pedologica Sinica, 2003, 40(5): 724-730. [31] Cui F J, Liu J H, Li L J, et al . Effect of zero tillage with mulching on active soil organic carbon. Acta Agricultural Boreali-occidentalis Sinica, 2012, 21(9): 195-200. [32] Liang B. Effect of Different Fertilization on Contents of Soil Microbial Biomass and Soluble Carbon and Nitrogen on the Loess Plateau[D]. Yangling: Northwest A & F University, 2008. [33] Zhao X. Effect of Land Use Types and Fertilization Systems on Active Soil Organic Carbon Pool[D]. Shenyang: Shenyang Agricultural University, 2007. [34] Zhang Y Q. Effects of Long Term Combination Application of Different Organic Materials and Nitrogen Fertilizer on Carbon, Nitrogen and Microbial Characteristics of Soil[D]. Zhengzhou: Henan Agricultural University, 2014. [35] Zhao M X. The Adsorption and Biodegradation of Soluble Organic Nitrogen, Carbon in Soil[D]. Yangling: Northwest A & F University, 2007. [36] Li S F, Yu Y C, He S. Correlation between dissolved organic carbon and soil factors of the forest soil in southern of China. Journal of Zhejiang Forestry College, 2003, 20(2): 119-123. [37] Magill A H, Aber J D. Variation in soil net mineralization rates with dissolved organic carbon additions. Soil Biology and Biochemistry, 2000, 32: 597-601. [38] Jones D L, John R. Dissolved organic nitrogen uptake by plants-An important N uptake pathway.Soil Biology and Biochemistry, 2005, 37: 413-423. [39] Jiao K, Li Z P. Dynamics and biodegradation of dissolved organic carbon in paddy soils derived from red clay. Soils, 2005, 37(3): 272-276. [40] Xu Q F, Jiang P K. Study on active organic carbon of soils under different types of vegetation. Journal of Soil and Water Conservation, 2004, 18(6): 84-87. [41] He D M. The Chemical Characteristics of Soil Organic Matter and Its Mineralization under Different Land Uses[D]. Nanjing: Nanjing Forestry University, 2014. [42] Wang J K, Li C, Yu S, et al . The biodegradation of dissolved organic carbon and nitrogen in brown earth with different fertility levels. Acta Ecologica Sinica, 2008, 28(12): 6165-6171. [43] Gao Z X. Contents and Characteristics of Soluble Organic Carbon, Nitrogen in the Arable Soil[D]. Yangling: Northwest A & F University, 2009. [44] Jansen B, Nierop Klaas G J, Verstraten J M. Mobility of Fe (II), Fe (III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma, 2003, 113(3/4): 323-340. [45] Li Z P, Zhang T L, Chen B Y. Dynamics of soluble organic carbon and its relation to mineralization of soil organic carbon. Acta Pedologica Sinica, 2004, 41(4): 544-552. [46] Marschner B, Bredow A. Temperature effects on release and ecologically relevant properties of dissolved organic carbon in sterilized and biologically active soil samples. Soil Biology & Biochemistry, 2002, 34(4): 459-466. [47] Zaman M, Di H J, Cameron K C, et al . Gross nitrogen mineralization and nitrification rates and their relationships to enzyme activities and the soil microbial biomass in soils treated with dairy shed effluent and ammonium fertilizer at different water potentials. Biology and Fertility of Soils, 1999, 29(2): 178-186. [48] Han C W, Li Z P, Liu L, et al . Influence on carbon and nitrogen mineralization after dissolved organic matter removal in subtropical Chinese paddy soils. Scientia Agricultura Sinica, 2007, 40(1): 107-113. [49] Agricultural Technology Extension and Service Center of China. Organic Fertilizer Nutrient Data Set in China[M]. Beijing: China Science and Technology Press, 1999. [50] Jia W. Studies on the Evaluation of Nutrient Resources Derived from Manure and Optimized Utilization in Arable Land of China[D]. Beijing: China Agricultural University, 2014. [51] Yang W Y, Tu N M. The Theory of Crop Cultivation[M]. Beijing: China Agriculture Press, 2003. [1] 张帆, 黄凤球, 肖小平, 等. 冬季作物对稻田土壤微生物量碳、氮和微生物熵的短期影响. 生态学报, 2009, 29(2): 734-739. [2] 唐剑武, 魏甲斌, 徐华勤, 等. 用于农田轮牧养鸡的移动鸡笼: 中国, ZL201520337464.1[P]. 2015-9-23. [3] 赵彤, 蒋跃利, 闫浩, 等. 黄土丘陵区不同坡向对土壤微生物生物量和可溶性有机碳的影响. 环境科学, 2013, 34(8): 3223-3230. [4] 赵先丽, 程海涛, 吕国红, 等. 土壤微生物生物量研究进展. 气象与环境学报, 2006, 22(4): 68-72. [5] 陈安磊, 王凯荣, 谢小立. 施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响. 农业环境科学学报, 2005, 24(6): 1094-1099. [7] 高菊生, 曹卫东, 李冬初, 等. 长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响. 生态学报, 2011, 31(16): 4542-4548. [9] 臧逸飞, 郝明德, 张丽琼, 等. 26年长期施肥对土壤微生物量碳、氮及土壤呼吸的影响. 生态学报, 2015, 35(5): 1445-1451. [10] 贾伟, 周怀平, 解文艳, 等. 长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响. 植物营养与肥料学报, 2008, 14(4): 700-705. [11] 李正, 刘国顺, 叶协锋, 等. 绿肥翻压年限对植烟土壤微生物量C、N和土壤C、N的影响. 江西农业学报, 2010, 22(4): 62-65. [12] 潘福霞, 鲁剑巍, 刘威, 等. 三种不同绿肥的腐解和养分释放特征研究. 植物营养与肥料学报, 2011, 17(1): 216-223. [13] 井大炜, 邢尚军. 鸡粪与化肥不同配比对杨树苗根际土壤酶和微生物量碳、氮变化的影响. 植物营养与肥料学报, 2013, 19(2): 455-461. [17] 李世清, 李生秀. 有机物料在维持土壤微生物体氮库中的作用. 生态学报, 2001, 21(1): 136-142. [18] 裴雪霞. 典型种植制度下长期施肥对土壤微生物群落多样性的影响[D]. 北京: 中国农业科学院, 2010. [19] 徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响. 土壤学报, 2002, 39(1): 89-96. [20] 刘国顺, 罗贞宝, 王岩, 等. 绿肥翻压对烟田土壤理化性状及土壤微生物量的影响. 水土保持学报, 2006, 20(1): 95-98. [21] 颜志雷, 方宇, 陈济琛, 等. 连年翻压紫云英对稻田土壤养分和微生物学特性的影响. 植物营养与肥料学报, 2014, 20(5): 1151-1160. [22] 韩晓日, 郑国砥, 刘晓燕, 等. 有机肥与化肥配合施用土壤微生物量氮动态、来源和供氮特征. 中国农业科学, 2007, 40(4): 765-772. [24] 杨曾平, 高菊生, 郑圣先, 等. 长期冬种绿肥对红壤性水稻土微生物特性及酶活性的影响. 土壤, 2011, 43(4): 576-583. [25] 刘守龙, 肖和艾, 童成立, 等. 亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥的反应特点. 农业现代化研究, 2003, 24(4): 278-283. [26] 宋日, 吴春胜, 牟金明, 等. 玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响. 应用生态学报, 2002, 13(3): 303-306. [27] 罗兰芳. 控释氮肥对稻田土壤微生物特性及氮素肥力的影响[D]. 长沙: 湖南农业大学, 2008. [28] 曾路生, 廖敏, 黄昌勇, 等. 水稻不同生育期的土壤微生物量和酶活性的变化. 中国水稻科学, 2005, 19(5): 441-446. [29] 高嵩涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性. 土壤学报, 2015, 52(4): 902-910. [30] 倪进治, 徐建民, 谢正苗, 等. 不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究. 土壤学报, 2003, 40(5): 724-730. [31] 崔凤娟, 刘景辉, 李立军, 等. 免耕秸秆覆盖对土壤活性有机碳库的影响. 西北农业学报, 2012, 21(9): 195-200. [32] 梁斌. 黄土区不同培肥措施对土壤微生物量和可溶性有机碳氮的影响[D]. 杨凌: 西北农林科技大学, 2008. [33] 赵鑫. 土地利用方式与施肥制度对土壤活性有机碳库的影响[D]. 沈阳: 沈阳农业大学, 2007. [34] 张永全. 长期不同有机物料与氮肥配施对土壤碳氮及微生物特性的影响[D]. 郑州: 河南农业大学, 2014. [35] 赵满兴. 可溶性有机氮、碳在土壤中的吸附和降解特性研究[D]. 杨凌: 西北农林科技大学, 2007. [36] 李淑芬, 俞元春, 何晟. 南方森林土壤溶解性有机碳与土壤因子的关系. 浙江林学院学报, 2003, 20(2): 119-123. [39] 焦坤, 李忠佩. 红壤稻田土壤溶解有机碳含量动态及其生物降解特征. 土壤, 2005, 37(3): 272-276. [40] 徐秋芳, 姜培坤. 不同森林植被下土壤水溶性有机碳研究. 水土保持学报, 2004, 18(6): 84-87. [41] 何冬梅. 不同土地利用方式土壤有机碳结构及矿化特征[D]. 南京: 南京林业大学, 2014. [42] 汪景宽, 李丛, 于树, 等. 不同肥力棕壤溶解性有机碳、氮生物降解特性. 生态学报, 2008, 28(12): 6165-6171. [43] 高忠霞. 农田土壤中可溶性有机碳、氮的含量及特性研究[D]. 杨凌: 西北农林科技大学, 2009. [45] 李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系. 土壤学报, 2004, 41(4): 544-552. [48] 韩成卫, 李忠佩, 刘丽, 等. 去除溶解性有机质对红壤水稻土碳氮矿化的影响. 中国农业科学, 2007, 40(1): 107-113. [49] 全国农业技术推广服务中心. 中国有机肥料养分数据集[M]. 北京: 中国科学技术出版社, 1999. [50] 贾伟. 我国粪肥养分资源现状及其合理利用分析[D]. 北京: 中国农业大学, 2014. [51] 杨文钰, 屠乃美. 作物栽培学各论[M]. 北京: 中国农业出版社, 2003. |