[1] Sashidhar B, Podile A R. Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of Applied Microbiology, 2010, 109(1): 1-12. [2] Zou X, Dan B, Doxtader K G. A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant & Soil, 1992, 147: 243-250. [3] Podile A R, Kishore G K. Plant growth-promoting rhizobacteria[M]//Gnanamanickam S S. Plant-Associated Bacteria. Netherlands: Springer, 2005: 195-230. [4] Alloush G A, Boyer D G, Belesky D P, et al . Phosphorus mobility in a karst landscape under pasture grazing system. Agronomie, 2003, 23(7): 593-600. [5] Zhang Q H. Study on Variation Features of Phosphorus of Karst Rocky Desertification Soil and Ecological Restore in Guizhou[D]. Guizhou: Guizhou University, 2007. 张清海. 贵州喀斯特石漠化地区土壤磷素变异特征及生态恢复研究[D]. 贵州: 贵州大学, 2007. [6] Tripura C, Sashidhar B, Podile A R. Ethyl methanesulfonate mutagenesis-enhanced mineral phosphate solubilization by groundnut-associated serratia marcescens GPS -5. Current Microbiology, 2007, 54(2): 79-84. [7] Pérez E, Sulbarán M, Ball M M, et al . Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology & Biochemistry, 2007, 39(11): 2905-2914. [8] Reyes I, Valery A, Valduz Z. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant & Soil, 2006, 287(1/2): 69-75. [9] Gulati A, Rahi P, Vyas P. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Current Microbiology, 2008, 56(1): 73-79. [10] Jorquera M A, Hernández M T, Rengel Z, et al . Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology & Fertility of Soils, 2008, 44(8): 1025-1034. [11] Badar R, Qureshi S A. Comparative effect of Trichoderma hamatum and host-specific rhizobium species on growth of Vigna mungo . Journal of Applied Pharmaceutical Science, 2012, (2): 128-132. [12] Pankaj K, Mishra, Shekhar C, et al . Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum -PR1 on iron acquisition, nutrient uptake and growth of lentil ( Lens culinaris L.). European Journal of Soil Biology, 2011, (47): 35-43. [13] Rong L Y, Yao T, Ma W B, et al . The inoculant potential of plant growth promoting rhizobacteria strains to improve the yield and quality of Trifolium pratense cv.Minshan. Acta Prataculturae Sinica, 2014, 23(5): 231-240. 荣良燕, 姚拓, 马文彬, 等. 岷山红三叶根际优良促生菌对其宿主生长和品质的影响. 草业学报, 2014, 23(5): 231-240. [14] Ma W B, Yao T, Wang G J, et al . Assessment of rhizobacteria strains for Vicia sativa . Acta Prataculturae Sinica, 2014, 23(5): 241-248. 马文彬, 姚拓, 王国基, 等. 根际促生菌筛选及其接种剂对箭筈豌豆生长影响的研究. 草业学报, 2014, 23(5): 241-248. [15] Guan P. The Effect of PGPR Fertilizers on the Growth and Quality of Alfalfa under the Different Soil Conditions[D]. Harbin: Harbin Normal University, 2014. 管鹏. 施用 PGPR 菌肥对不同土壤条件下的苜蓿生长及品质的影响[D]. 哈尔滨: 哈尔滨师范大学, 2014. [16] Wu Y J, Zhang Y, Chi Y K, et al . The leaf morphological diversity of wild white clover in Guizhou karst area. Jiangsu Agriculture Science, 2016, 44(2): 291-296. 吴永洁, 张俞, 池永宽, 等. 贵州省岩溶地区野生白三叶形态多样性. 江苏农业科学, 2016, 44(2): 291-296. [17] Bai S J, Yang Y S. Effects of white clover on sail fertility and following crop. Pratacultural Science, 1991, 8(3): 31-32. 白淑娟, 杨运生. 白三叶草地的土壤肥力及对后作的影响. 草业科学, 1991, 8(3): 31-32. [18] Lin Q M, Zhao X R, Sun Y X, et al . Community characters of soil phosphobacteria in four ecosystems. Soil and Environmental Science, 2000, 9(1): 34-37. 林启美, 赵小蓉, 孙焱鑫, 等. 四种不同生态系统的土壤解磷细菌数量及种群分布. 土壤与环境, 2000, 9(1): 34-37. [19] Li W H, Shi J Y. Isolation, purification, and phosphate-solubilizing capability of phosphorous bacteria in West Lake sediment. Chinese Journal of Applied Ecology, 2006, 17(11): 2112-2116. 李文红, 施积炎. 西湖沉积物中解磷菌的分离纯化及其解磷能力. 应用生态学报, 2006, 17(11): 2112-2116. [20] Wan L, Kang L H, Liao B W, et al . The relationship between organic acid secreted from phosphorus-solubilizing bacteria. Forest Research, 2004, 17(1): 89-94. 万璐, 康丽华, 廖宝文, 等. 红树林根际解磷菌分离、培养及解磷能力的研究. 林业科学研究, 2004, 17(1): 89-94. [21] Hafeez F Y, Malik K. Manual on Biofertilizer Technology[M]. Pakistan: National Institute for Biotechnology & Genetic Engineering (NIBGE), 2000. [22] Xi L Q, Yao T, Yang J J, et al . Property of associative nitrogen-fixing bacteria producing IAA and its promoting growth of oat. Grassland and Turf, 2005, (4): 25-29. 席琳乔, 姚拓, 杨俊基, 等. 联合固氮菌株分泌能力及其对燕麦的促生效应测定. 草原与草坪, 2005, (4): 25-29. [23] Lin Q M, Wang H, Zhao X R, et al . The phosphorus ability and mechanism analysis in some bacterials and funguses. Microbiology, 2001, 28(2): 26-30. 林启美, 王华, 赵小蓉, 等. 一些细菌和真菌的解磷能力及其机理初探. 微生物学通报, 2001, 28(2): 26-30. [24] Cheng C, Yang M, Li J X, et al . Biolog microbial ideritificatron system study on the operating regulation of Bacteria identifi cation. Food and Fermentation Industry, 2006, 32(5): 50-54. 程池, 杨梅, 李金霞, 等. Biolog微生物自动分析系统细菌鉴定操作规程的研究. 食品与发酵工业, 2006, 32(5): 50-54. [25] Wang G H, Zhao Y, Zhou D R, et al . Review of phosphate-solubilizing microorganisms. Ecology and Environment, 2003, 12(1): 96-101. 王光华, 赵英, 周德瑞, 等. 解磷菌的研究现状与展望. 生态环境, 2003, 12(1): 96-101. [26] Rodrí Guez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 1999, 17(4/5): 319-339. [27] Ogut M, Er F, Kandemir N. Phosphate solubilization potentials of soil Acinetobacter strains. Biology & Fertility of Soils, 2010, 46(7): 707-715. [28] Walpola B C, Yoon M H. Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. African Journal of Microbiology Research, 2013, 7(3): 7266-7275. [29] Kumar A, Bhargava P, Rai L C, et al . Isolation and molecular characterization of phosphate solubilizing Enterobacter and Exiguobacterium species from paddy fields of Eastern Uttar Pradesh, India. African Journal of Microbiology Research, 2010, 4(4): 820-829. [30] Li X J, Wu F G, Wang B X, et al . The identification and application of a phosphorus-solubilizing bacteria in tabacco. Henan Agriculture Science, 2011, 40(6): 66-70. 李晓举, 吴风光, 王豹祥, 等. 一株烤烟根际解磷细菌的鉴定及其在烤烟生产中的应用. 河南农业科学, 2011, 40(6): 66-70. [31] Lin K M, Guan X F, Ma L N, et al . Organophosphorus pesticide degrading bacteria-the biological characteristics of Enterobacter claocae . Chinese Agricultural Science Bulletin, 2008, 24(9): 382-386. 林抗美, 官雪芳, 马丽娜, 等. 有机磷农药降解菌——阴沟肠杆菌的生物学特性. 中国农学通报, 2008, 24(9): 382-386. [32] Liu F P, Liu H Q, Zhou H L, et al . Isolation and characterization of phosphate-solubilizing bacteria from betel nut ( Areca catechu ) and their effects on plant growth and phosphorus mobilization in tropical soils. Biology & Fertility of Soils, 2014, 50(6): 927-937. [33] Banik S, Dey B K. Phytohormone producing of phosphate solubilizing bacteria. Indian Agriculturist, 1978, 22: 93-97. [34] Vyas P, Gulati A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas . BMC Microbiology, 2009, 9(1): 174. [35] Luo S Q, Ling Y, Huang J G. In vitro effects of artemisinin on inorganic phosphate-solubilizing bacteria. African Journal of Microbiology Research, 2013, 7(6): 525-532. [36] Qiu Y S, Zhou S P, Mo X Z, et al . Study of nitrogen fixation bacteria associated with rice root II. The characteristics of nitrogen fixation by Alcaligenes faecalis strain A-15 and Enterobacter claocae strain E-26. Acta Microbiologica Sinica, 1981, 21(4): 473-476. 丘元盛, 周淑萍, 莫小真, 等. 稻根联合固氮细菌的研究II. 粪产碱菌A-15和阴沟肠杆菌E-26的固氮特性. 微生物学报, 1981, 21(4): 473-476. [37] Ova E A, Kutman U B, Ozturk L, et al . High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant and Soil, 2015, 393(1/2): 147-162. [38] Pace P, Cralle H T, El-Halawany S H, et al . Drought-induced changes in shoot and root growth of young cotton plants. Journal of Cotton Science, 1999, 4(3): 183-187. |