[1] Liu X J, Liu M Y. Regional Agricultural Sustainable Development and Utilization of Halophytes[M]. Beijing: China Meteorological Press, 2002: 1-9. 刘小京, 刘孟雨. 盐生植物利用与区域农业可持续发展[M]. 北京: 气象出版社, 2002: 1-9. [2] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. [3] Liu A R, Zhang Y B, Zhong Z H, et al . Effects of salt stress on the growth and osmotica accumulation of Coleus blumei . Acta Prataculturae Sinica, 2013, 22(2): 211-218. 刘爱荣, 张远兵, 钟泽华, 等. 盐胁迫对彩叶草生长和渗透调节物质积累的影响. 草业学报, 2013, 22(2): 211-218. [4] Najmeh N, Ehsan S, Ghorbanali N. Assessment of Na + /H + antiporters and H + -ATPase pumps transcnptional changes in Aeluropus littoralis dealing with salt stress. Advances in Environmental Biology, 2012, 6(5): 1769-1773. [5] Zhou S, Zhang Z, Tang Q, et al . Enhanced V-ATPase activity contributes to the improved salt tolerance of transgenic tobacco plants overexpressing vacuolar Na + /H + antiporter AtNHX 1. Biotechnology Letters, 2011, 33(2): 375-380. [6] Ashnest J R, Huynh D L, Dragwidge J M, et al . Arabidopsis intracellular NHX-type sodium-proton antiporters are required for seed storage protein processing. Plant & Cell Physiology, 2015, 56(11): 2220-2233. [7] Reguera M, Bassil E, Tajima H, et al . pH regulation by NHX-type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis . The Plant Cell, 2015, 27(4): 1200-1217. [8] Shi H, Ishitani M, Kim C, et al . The Arabidopsis thaliana salt tolerance gene SOS 1 encodes a putative Na + /H + antiporter. Proceedings of the National Academy of Sciences, 2000, 97(12): 6896-6901. [9] Yokoi S, Quintero F J, Cubero B, et al . Differential expression and function of Arabidopsis thaliana NHX Na + /H + antiporters in the salt stress response. The Plant Journal, 2002, 30(5): 529-539. [10] Quintero F J, Blatt M R, Pardo J M. Functional conservation between yeast and plant endosomal Na + /H + antiporters. FEBS Letters, 2000, 471(2): 224-228. [11] He C X, Yan J Q, Shen G X, et al . Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiology, 2005, 46(11): 1848-1854. [12] Li J, Zhang F C, Wang W Q, et al . Advance in the study of higher plant promoter. Letters Biology Technology, 2006, 17(4): 658-661. 李杰, 张福城, 王文泉, 等. 高等植物启动子的研究进展. 生物技术通讯, 2006, 17(4): 658-661. [13] Wu R R. The Cloning and Function Analysis of Suaeda salsa SsHKT 1 Promotor[D]. Jinan: Shandong Normal University, 2011. 吴蕊蕊. 盐地碱蓬 SsHKT 1 基因启动子的克隆及功能分析[D]. 济南: 山东师范大学, 2011. [14] Li Y M, Feng Y J, Cao X W, et al . Cloning and transient expression of the GGPPS gene promoter from the energy plant Taraxacum kok-saghyz . Acta Prataculturae Sinica, 2016, 25(12): 180-187. 李永梅, 冯玉杰, 曹新文, 等. 能源橡胶草GGPPS基因启动子的克隆及瞬时表达研究. 草业学报, 2016, 25(12): 180-187. [15] Wang J C, Meng Y X, Li B C, et al . Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus . Plant, Cell and Environment, 2015, 38: 655-669. [16] Wang J C, Yao L R, Li B C, et al . Comparative proteomic analysis of cultured suspension cells of the halophyte Halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress. Frontiers in Plant Science, 2016, 7: 1-12. [17] Andrew H P, Curt L B, Jonathan F W. A rapid method for extraction of cotton ( Gossypium spp.) genomic DNA suitable for RFLP for PCR analysis. Plant Molecular Biology Reporter, 1993, 11(2): 122-127. [18] Liu Y G, Mitsukawa N, Oosumi T, et al . Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal, 1995, 8(3): 457-463. [19] Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995, 25(3): 674-681. [20] Li Z T, Gray D J. Isolation by improved thermal asymmetric interlaced PCR and characterization of a seed-specific 2S albumin gene and its promoter from grape ( Vitis vinifera L.). Genome, 2005, 48(2): 312-320. [21] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thalina . The Plant Journal, 1998, 16: 735-743. [22] Ma L L. Optimization of Tissue Culture System for Barley Mature embryos, Construction of Expression Vector and Genetic Transformation of HgNHX 1 Gene[D]. Lanzhou: Gansu Agricultural University, 2015. 马玲珑. 大麦成熟胚离体培养条件的优化及 HgNHX 1 基因表达载体的构建和遗传转化[D]. 兰州: 甘肃农业大学, 2015. [23] Nie L N, Xia L Q, Xu Z S, et al . Progression cloning and functional study of plant gene promoters. Journal of Plant Genetic Resources, 2008, 9(3): 385-391. 聂丽娜, 夏兰琴, 徐兆师, 等. 植物基因启动子的克隆及其功能研究进展. 植物遗传资源学报, 2008, 9(3): 385-391. [24] Zheng L, Shi L M, Tian H Y, et al . Cloning and functional analysis of peanut AhDGAT 2 a promoter. Acta Agronomica Sinica, 2016, 42(7): 1094-1099. 郑玲, 史灵敏, 田海莹, 等. 花生 AhDGAT 2 a 基因启动子的克隆和功能验证. 作物学报, 2016, 42(7): 1094-1099. [25] Yang G D. Isolation and Characterization of a Salt Inducible GhNHX 1 Promoter from Gossypium hirsutum [D]. Taian: Shandong Agriculture University, 2007. 杨国栋. 棉花耐盐基因 GhNHX 1启动子的克隆及功能分析[D]. 泰安: 山东农业大学, 2007. [26] Yang Y X, Ren Y P, Su Y M, et al . Cloning and analysis of two promoters of stress-related genes in Medicago varia Xinmu-1. Pratacultural Science, 2012, 29(12): 1887-1893. 杨云尧, 任燕萍, 苏豫梅, 等. 新牧1号苜蓿两个抗逆相关基因启动子的克隆及分析. 草业科学, 2012, 29(12): 1887-1893. [27] Gangappa S N, Maurya J P, Yaday V, et al . The regulation of the Z-Box and G-Box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis . Plos One, 2012, 8(4): 7377-7382. [28] Li H F, Wang X F, Ran K, et al . Expression and protein interaction analysis of light responsive bZIP transcription factor MdHY5. Scientia Agricultura Sinica, 2014, 21: 4318-4327. [29] Kumar A. Characterisation of Promoter and Transcription Factors of Coffea sp. with Special Reference to Caffeine Metabolism[D]. Karnataka: University of Mysore, 2015. [30] Yaday V, Kundu S, Chattopadhyay D, et al . Light regulated modulation of Z-box containing promoters by photoreceptors and downstream regulatory components, COP1 and HY5, in Arabidopsis . The Plant Journal, 2002, 31: 741-753. |