[1] Bondzio A, Gabler C, Badewien-Rentzsch B, et al . Identification of differentially expressed proteins in ruminal epithelium in response to a concentrate-supplemented diet. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011, 301(2): G260-268. [2] Lu J H, Liu J, Lu W, et al . Effects of dietary energy levels on cell cycle of ruminal epithelium in goats. Jiangsu Agricultural Science, 2014, 42(6): 145-149. 卢劲晔, 刘静, 卢炜, 等. 日粮能量水平对山羊瘤胃上皮细胞周期的影响. 江苏农业科学, 2014, 42(6): 145-149. [3] Wang Y A, Zhang C L, Wang Y H, et al . Signal pathway and physiological functions of short chain fatty acid receptor GPR41 and GPR43. China Cattle Science, 2013, 39(6): 49-53. 王永安, 张春雷, 王艳红, 等. 短链脂肪酸受体GPR41、GPR43的信号通路及生理功能. 中国牛业科学, 2013, 39(6): 49-53. [4] Lu Z, Gui H, Yao L, et al . Short-chain fatty acids and acidic pH upregulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2015, 308(4): R283-293. [5] Le Poul E, Loison C, Struyf S, et al . Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. Journal of Biological Chemistry, 2003, 278(28): 25481-25489. [6] Khajah M A, Mathew P M, Luqmani Y A. Inhibitors of PI3K/ERK 1/2/p38 MAPK show preferential activity against endocrine resistant breast cancer cells. Oncology Research, 2017, 25(8): 1283-1295. [7] Shen H, Lu Z, Chen Z, et al . Rapid fermentable substance modulates interactions between ruminal commensals and toll-like receptors in promotion of immune tolerance of goat rumen. Frontiersin Microbiology, 2016, 7: 1812. [8] Argov-Argaman N, Eshel O, Moallem U, et al . Effects of dietary carbohydrates on rumen epithelial metabolism of nonlactating heifers. Journal of Dairy Science, 2012, 95(7): 3977-3986. [9] Aschenbach J R, Penner G B, Stumpff F, et al . Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal Science, 2011, 89(4): 1092-1107. [10] Zhang X L. Effects of Lovastatin on Proliferation and Apoptosis of HL-60 Cells and Its Molecular Mechanisms[D]. Chongqing: Chongqing Third Military Medical University, 2002. 张雪玲. 胆固醇合成抑制剂洛伐他汀对HL-60细胞增殖和凋亡的影响及机制研究[D]. 重庆: 重庆第三军医大学, 2002. [11] Mao Y H, Mi M T. Effects of cholesterol on cellular structure and function. Foreign Medical (Hygiene Branch), 2004, 31(6): 352-355. 毛应华, 糜漫天. 胆固醇对细胞膜结构和功能的影响. 国外医学(卫生学分册), 2004, 31(6): 352-355. [12] Gao X, Oba M. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells. Journal of Dairy Science, 2016, 99(11): 8733-8745. [13] Goodlad R A. Some effects of diet on the mitotic index and the cell cycle of the ruminal epithelium of sheep. Quarterly Journal of Experimental Psychology Section B-comparative and Physiological Psychology, 1981, 66(4): 487-499. [14] Khafipour E, Krause D O, Plaizier J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 2009, 92(3): 1060-1070. [15] Tao S, Duanmu Y, Dong H, et al . A high-concentrate diet induced colonic epithelial barrier disruption is associated with the activating of cell apoptosis in lactating goats. BMC Veterinary Research, 2014, 10: 235. [16] Tao S, Duanmu Y, Dong H, et al . High concentrate diet induced mucosal injuries by enhancing epithelial apoptosis and inflammatory response in the hindgut of goats. PLoS One, 2014, 9(10): e111596. [17] Yan L, Zhang B, Shen Z. Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats. Journal of Dairy Science, 2014, 97(9): 5668-5675. [18] Gui H, Shen Z. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats. Journal of Dairy Science, 2016, 99(8): 6627-6638. [19] Lee J I, Kim I H, Nam T J. Crude extract and solvent fractions of Calystegia soldanella induce G1 and S phase arrest of the cell cycle in HepG2 cells. International Journal of Oncology, 2017, 50(2): 414-420. [20] Wu J, Zhou Z, Hu Y, et al . Butyrate-induced GPR41 activation inhibits histone acetylation and cell growth. Journal of Genetics and Genomics, 2012, 39(8): 375-384. [21] Hua C, Tian J, Tian P, et al . Feeding a high concentration diet induces unhealthy alterations in the composition and metabolism of ruminal microbiota and host response in a goat model. Frontiersin Microbiology, 2017, 8: 138. [22] He Z X, Sun Z H, Tan Z L, et al . Effects of maternal protein or energy restriction during late gestation on antioxidant status of plasma and immune tissues in postnatal goats. Journal of Animal Science, 2012, 90(12): 4319-4326. [23] Sharifi M, Bashtani M, Naserian A A, et al . The effect of increasing levels of date palm ( Phoenix dactylifera L.) seed on the performance, ruminal fermentation, antioxidant status and milk fatty acid profile of Saanen dairy goats. Journal of Animal Physiology and Animal Nutrition (Berl), 2017, 101(5): e332-e341. [24] Zhu R Q, Jiang W W, Tan Z L, et al . Progress of reactive oxygen species, oxidative, stress, cell apoptosis and antioxidant in animals. China Veterinary Medicine Journal, 2015, 3: 21-25. 朱若岑, 蒋维维, 谭柱良, 等. 动物体内活性氧、氧化应激与细胞凋亡以及抗氧化剂研究进展. 中兽医医药杂志, 2015, 3: 21-25. [25] Idriss A A, Hu Y, Sun Q, et al . Prenatal betaine exposure modulates hypothalamic expression of cholesterol metabolic genes in cockerels through modifications of DNA methylation. Poultry Science, 2017, 96(6): 1715-1724. [26] Tessema M, Belinsky S A. Mining the epigenome for methylated genes in lung cancer. Proceedings of the American Thoracic Society, 2008, 5(8): 806-810. [27] Yao X M, Song B L, Wang C H, et al . Human Acyl-coenzyme A: cholesterol Aacyltr ansfer ase (ACAT). Journal of Shanghai Jiaotong University (Agricultural Science), 2006, 24(1): 108-115. 姚晓敏, 宋保亮, 王灿华, 等. 人酰基辅酶A: 胆固醇酰基转移酶(ACAT). 上海交通大学学报(农业科学版), 2006, 24(1): 108-115. [28] Steele M A, Vandervoort G, AlZahal O, et al . Rumen epithelial adaptation to high-grain diets involves the coordinated regulation of genes involved in cholesterol homeostasis. Physiological Genomics, 2011, 43(6): 308-316. [29] Lu Z, Yao L, Jiang Z, et al . Acidic pH and short-chain fatty acids activate Na + transport but differentially modulate expression of Na + /H + exchanger isoforms 1, 2, and 3 in omasal epithelium. Journal of Dairy Science, 2016, 99(1): 733-745. [30] Schlau N, Guan L L, Oba M. The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers. Journal of Dairy Science, 2012, 95(10): 5866-5875. |