[1] Niu X L, Nan Z B.Review of minirhizotron applications for study of fine roots in grassland. Acta Prataculturae Sinica, 2017, 26(11): 205-215. 牛学礼, 南志标. 运用微根管技术研究草地植物细根的进展. 草业学报, 2017, 26(11): 205-215. [2] Kumar B, Abdel-Ghani A H, Reyes-Matamoros J, et al. Genotypic variation for root architecture traits in seedlings of maize (Zea mays L.) inbred lines. Plant Breeding, 2012, 131(4): 465-478. [3] Zobel R W, Waisel Y A.Plant root system architectural taxonomy: A framework for root nomenclature . Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 2010, 144(2): 507-512. [4] Wen W L, Guo X Y, Zhao C J, et al. Crop roots configuration and visualization: A Review. Scientia Agricultura Sinica, 2015, 48(3): 436-448. 温维亮, 郭新宇, 赵春江, 等. 作物根系构型三维探测与重建方法研究进展. 中国农业科学, 2015, 48(3): 436-448. [5] Lu W, Wang X C, Wang F J.Design and validation of in situ micro root observation system for tomato and pepper. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 12-18. 鲁伟, 汪小旵, 王凤杰. 番茄辣椒微型根系形态原位采集系统设计与实现. 农业工程学报, 2018, 34(22): 12-18. [6] Muñoz-Romero V, López-Bellido L, López-Bellido R J. Faba bean root growth in a vertisol: Tillage effects. Field Crops Research, 2011, 120(3): 338-344. [7] Jackson R B, Sperry J S, Dawson T E.Root water uptake and transport: Using physiological processes in global predictions. Trends in Plant Science, 2000, 5(11): 482-488. [8] Lynch J P, Brown K M.New roots for agriculture: Exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1598-1604. [9] Huppe H C, Turpin D H.Integration of carbon and nitrogen metabolism in plant and algal cells. Annual Review of Plant Biology, 1994, 45(1): 577-607. [10] Sinha S K, Rani M, Bansal N, et al. Nitrate starvation induced changes in root system architecture, carbon∶nitrogen metabolism, and miRNA expression in nitrogen-responsive wheat genotypes. Appl Biochem Biotechnol, 2015, 177(6): 1299-1312. [11] Zhang D, Long H Y, Jin J, et al. Effects of growth interaction effect of Leguminous and Gramineous pasture intercropping and absorption of nutrient and phosphorus on pasture expression. Acta Prataculturae Sinica, 2018, 27(10): 15-22. 张德, 龙会英, 金杰, 等. 豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响. 草业学报, 2018, 27(10): 15-22. [12] Wahla I H, Ahmad R, Ehsanullah A A, et al. Competitive functions of components crops in some barley based intercropping systems. International Journal of Agriculture and Biology (Pakistan), 2009, 11(1): 69-71. [13] Hu W, Zhang Y H, Li P, et al. Effects of water and nitrogen supply on growth and microclimate characteristics of alfalfa under drip irrigation. Acta Prataculturae Sinica, 2018, 27(12): 122-132. 胡伟, 张亚红, 李鹏, 等. 水氮供应对地下滴灌紫花苜蓿生长特征及草地小气候的影响. 草业学报, 2018, 27(12): 122-132. [14] Zhang Z L, Qu W J, Li X F.Experimental guide of plant physiology. Beijing:Higher Education Press, 2009. 张志良, 瞿伟箐, 李小芳. 植物生理学实验指导. 北京:高等教育出版社, 2009. [15] Lu R K.Chemical analysis of soil agriculture. Beijing: China Agricultural Science and Technology Press, 2000. 鲁如坤. 土壤农业化学分析方法. 北京:中国农业科技出版社, 2000. [16] Zou Q.Guide of phytophysiological experiment.Beijing:China Agriculture Press, 2006. 邹琦.植物生理学实验指导. 北京:中国农业出版社, 2006. [17] Tjoelker M G, Craine J M, Wedin D, et al. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 2005, 167(2): 493-508. [18] Withington J M, Reich P B, Oleksyn J, et al. Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 2006, 76(3): 381-397. [19] Freschet G T, Cornelissen J H C, Van Logtestijn R S P, et al. Evidence of the “plant economics spectrum” in a subarctic flora. Journal of Ecology, 2010, 98(2): 362-373. [20] Hou F Y, Zhang L M, Xie B T, et al. Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato [Ipomoea batatas (L.) Lam.] in Northern China. Acta Physiologiae Plantarum, 2015, 37(8): 164-174. [21] Wang S Y, Li H, Liu Q, et al. Interactive effects of nitrogen and potassium on root growth and leaf enzyme activities of sweet potato. Acta Agriculturae Boreali-Sinica, 2015, 30(5): 167-173. 汪顺义, 李欢, 刘庆, 等. 氮钾互作对甘薯根系发育及碳氮代谢酶活性的影响. 华北农学报, 2015, 30(5): 167-173. [22] Wen L L, Li Y, Zhang D Q, et al. Effects of supplemental light duration on the growth, photosynthetic characteristic and carbon etabolism of tomato seedlings in winter under solar greenhouse. Plant Physiology Journal, 2018, 54(9): 1490-1498. 文莲莲, 李岩, 张聃丘, 等. 冬季温室补光时长对番茄幼苗生长、光合特性及碳代谢的影响. 植物生理学报, 2018, 54(9): 1490-1498. [23] Wang J, Nie Z J, Fu H C, et al. Effects of exogenous Zn2+ on root growth and some key enzymes in nitrogen metabolism in winter wheat seedlings. Journal of Henan Agricultural University, 2018, 52(3): 307-312. 王佳, 聂兆君, 扶海超, 等. 外源Zn2+对冬小麦幼苗根系生长及部分氮代谢关键酶的影响. 河南农业大学学报, 2018, 52(3): 307-312. [24] Song S Y, Xu Y B, Li S Q, et al. Responses of root and leaf NR activity in wheat seedling to elevated CO2 concentration under different N levels. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(11): 2203-2209. 宋淑英, 许育彬, 李世清, 等. CO2倍增对不同氮水平下小麦幼苗根系及叶片NR活性的影响. 西北植物学报, 2010, 30(11): 2203-2209. [25] Bates G H.A device for the observation of root growth in the soil. Nature, 1937, 139: 966-967. [26] Zhang F, Chen J W, Wang M B.The spatial distribution and seasonal dynamics of fine roots in a young Caragana korshinskii plantation. Acta Ecologica Sinica, 2012, 32(17): 5484-5493. 张帆, 陈建文, 王孟本. 幼龄柠条细根的空间分布和季节动态. 生态学报, 2012, 32(17): 5484-5493. [27] Pritchard S G, Strand A E, Mccormack M L, et al. Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2-enrichment: A six-year-minirhizotron study. Global Change Biology, 2008, 14(3): 588-602. [28] Liao R W, Liu J M, Bai Y M, et al. Spatial distribution and temporal variation of maize root in the soil under field conditions. Chinese Journal of Eco-Agriculture, 2014, 22(3): 284-291. 廖荣伟, 刘晶淼, 白月明, 等. 玉米生长后期的根系分布研究. 中国生态农业学报, 2014, 22(3): 284-291. [29] Gao S J, Cao W D, Kristian T K.Comparison of the root morphology of oilseed rape and winter wheat during the seedling period using a rhizotron tube method. Acta Prataculturae Sinica, 2017, 26(4): 134-142. 高嵩涓, 曹卫东, Kristian T K.利用根管法对油菜和冬小麦苗期根系形态的研究. 草业学报, 2017, 26(4): 134-142. [30] Kobiela B, Biondini M, Sedivec K.Comparing root and shoot responses to nutrient additions and mowing in a restored semi-arid grassland. Plant Ecology, 2016, 217(3): 303-314. [31] Andersen S N, Dresbøll D B, Thorup-Kristensen K.Root interactions between intercropped legumes and non-legumes-a competition study of red clover and red beet at different nitrogen levels. Plant and Soil, 2014, 378(1/2): 59-72. [32] Hauggaard-Nielsen H, Ambus P, Jensen E S.Interspecific competition, N use and interference with weeds in pea-barley intercropping. Field Crops Research, 2001, 70(2): 101-109. [33] Li Q Z, Yu C B, Hu H S, et al. Difference of nitrogen utilization and distribution of mineral nitrogen in soil profile by competitive abilities of intercropping systems. Plant Nutrition and Fertilizer Science, 2010, 16(4): 777-785. 李秋祝, 余常兵, 胡汉升, 等. 不同竞争强度间作体系氮素利用和土壤剖面无机氮分布差异. 植物营养与肥料学报, 2010, 16(4): 777-785. [34] Tang X M, Zhong R C, Jie H K, et al. Effect of cassava-peanut intercropping on metabolites and key enzyme activity of carbon-nitrogen metabolism of peanut leaf. Southwest China Journal of Agricultural Sciences, 2014, 27(6): 2316-2321. 唐秀梅, 钟瑞春, 揭红科, 等. 间作木薯对花生叶片碳氮代谢产物及关键酶活性的影响. 西南农业学报, 2014, 27(6): 2316-2321. [35] Tang X M, Zhong R C, Jie H K, et al. Effect of interplanting peanut on metabolites and key enzyme activities of carbon-nitrogen metabolism of cassava. Chinese Agricultural Science Bulletin, 2011, 27(3): 94-98. 唐秀梅, 钟瑞春, 揭红科, 等. 间作花生对木薯碳氮代谢产物及关键酶活性的影响. 中国农学通报, 2011, 27(3): 94-98. [36] Afsharnia M, Aliasgharzad N, Hajiboland R, et al. The effect of light intensity and zinc deficiency on antioxidant enzyme activity, photosynthesis of corn. International Journal of Agronomy and Plant Production, 2013, 4: 425-428. [37] Keddy P, Twolan-Strutt L, Shipley B.Experimental evidence that interspecific competitive asymmetry increases with soil productivity. Oikos, 1997, 80(2): 253-256. |