草业学报 ›› 2022, Vol. 31 ›› Issue (1): 217-228.DOI: 10.11686/cyxb2020485
• 综合评述 • 上一篇
收稿日期:
2020-10-28
修回日期:
2021-01-06
出版日期:
2021-12-01
发布日期:
2021-12-01
通讯作者:
张吉宇
作者简介:
Corresponding author. E-mail: zhangjy@lzu.edu.cn基金资助:
Zhen DUAN(), Fan WU, Qi YAN, Ji-yu ZHANG()
Received:
2020-10-28
Revised:
2021-01-06
Online:
2021-12-01
Published:
2021-12-01
Contact:
Ji-yu ZHANG
摘要:
香豆素是来源于苯丙烷代谢途径中重要的次级代谢产物,具有多种生物活性,对植物的生长发育及应答逆境胁迫有重要作用。本研究对香豆素生物合成途径以及所涉及的关键酶基因研究进展进行综述,分析了葡萄糖基转移酶基因家族的系统进化,并对香豆素目前研究的问题进行总结以及今后的研究方向进行展望,以期为香豆素生物合成及其后续研究提供借鉴。
段珍, 吴凡, 闫启, 张吉宇. 植物香豆素生物合成途径及关键酶基因研究进展[J]. 草业学报, 2022, 31(1): 217-228.
Zhen DUAN, Fan WU, Qi YAN, Ji-yu ZHANG. Research progress on plant coumarin biosynthesis pathway and the genes encoding the key enzymes[J]. Acta Prataculturae Sinica, 2022, 31(1): 217-228.
名称 Name | 主要功能和作用 Main functions | 代表物种 Representative species | 参考文献 Reference |
---|---|---|---|
苯丙氨酸解氨酶Phenylalanine ammonia-lyase,PAL | 催化苯丙氨酸脱氨生成反式肉桂酸Catalyze phenylalanine into trans-cinnamic acid | 白花前胡P. praeruptorum | [ |
肉桂酸2-羟化酶Cinnamic acid 2-hydroxylase,C2H | 催化反式肉桂酸的邻羟基化Catalyze o-hydroxylation of trans-cinnamic acid | - | [ |
肉桂酸4-羟化酶Cinnamic acid 4-hydroxylase,C4H | 催化肉桂酸C4羟基化形成对-羟基香豆酸Catalyze aromatic ring-4 hydroxylation of cinnamic acid into p-coumaric acid | 紫花苜蓿Medicago sativa | [ |
4-香豆酸CoA连接酶4-coumarate CoA ligase,4CL | 催化肉桂酸及其羟基或甲氧基衍生物生成相应的肉桂酸CoA酯Convert cinnamic acid and its hydroxy or methoxy derivates to corresponding cinnamate CoA thioesters | 白花前胡P. praeruptorum | [ |
对香豆酰酯3’-羟化酶p-coumaroylshikimate/quinate 3-hydroxylase,C3’H | 催化香豆酰奎尼酸和香豆酰莽草酸分别生成咖啡酰奎尼酸和咖啡酰莽草酸Catalyze p-coumaroyl shikimic acid and p-coumaroyl quinic acid to caffeoyl shikimic acid and caffeoyl quinic acid | 芸香Ruta graveolens | [ |
香豆酸-3-羟基化酶4-coumarate-3-hydroxylase,C3H | 催化对香豆酸的3位C的羟基化生成咖啡酸Hydroxylate p-coumaroyl ester derivatives at the ring-3 position, leading to caffeic acid | 苎麻Boehmeria nivea | [ |
羟基肉桂酰基转移酶Hydroxycinnamoyl transferase,HCT | 以对香豆酰辅酶A等多种酰基辅酶A作为酰基供体,催化莽草酸、奎尼酸等形成酰胺化合物Catalyze the synthesis of the shikimate and quinate esters of p-coumaric acid, using a variety of acyl coenzyme A, such as coumaryl coenzyme A as acyl donors | 拟南芥A. thaliana | [ |
咖啡酸O-甲基转移酶Caffeic acid O-methyltransferase,COMT | 催化咖啡酸生成阿魏酸Catalyze caffeic acid to ferulic acid | 白花前胡P. praeruptorum | [ |
咖啡酰辅酶A O-甲基转移酶Caffeoyl CoA O-methyltransferase,CCoAOMT | 催化咖啡酰CoA形成阿魏酰CoA Catalyze caffeoyl CoA to feruyl CoA | 拟南芥A. thaliana | [ |
香豆酰CoA 2’-羟化酶p-coumaroyl CoA 2’-hydroxylase,C2’H | 催化对香豆酰CoA发生邻羟基化形成2,4-二羟基香豆酰CoA Catalyze o-hydroxylation of coumaryl CoA to 2, 4-dihydroxy coumaryl CoA | 芸香R. graveolens | [ |
阿魏酰-CoA 6’-羟化酶1 Feruloyl-CoA 6’-hydroxylase1,F6’H1 | 催化阿魏酰CoA芳香环脂肪侧链邻羟基化生成6-羟基阿魏酰CoA Catalyze hydroxylation of the fatty side chain of aromatic ring of feruyl-CoA to 6-hydroxylferuyl-CoA | 拟南芥A. thaliana | [ |
香豆素合酶Coumarin synthase,COSY | 催化顺-反异构化和内酯化 Catalyse trans-cis isomerization and lactonization | 拟南芥A. thaliana | [ |
UDP-葡萄糖基转移酶UDP-glucosyltransferase,UGT | 催化糖基化反应,将糖基从活化的供体分子转移到受体分子,形成相应的葡萄糖苷 Catalyzing the transfer of a glycosyl moiety from an activated donor to an acceptor molecule, forming corresponding glucoside | 拟南芥A. thaliana | [ |
β-葡萄糖苷酶β-glucosidases,BGLU | 催化碳水化合物部分和香豆素核心结构之间的β-葡萄糖苷键的水解,产生香豆素苷元形式 Catalyze the hydrolysis of the β-glucosidic bond between the carbohydrate portion and the coumarin core structure to produce the coumarin aglycone | 玉米Z. mays | [ |
东莨菪内酯8-羟化酶Scopoletin 8-hydroxylase,S8H | 催化东莨菪内酯的C8位羟基化转化为秦皮素 Catalyze hydroxylation of scopoletin at C8 position to fraxetin | 拟南芥A. thaliana | [ |
O-甲基转移酶O-methyltransferase,OMT | 催化七叶亭甲基化为东莨菪内酯Methylate esculetin generating scopoletin | 钝鳞紫背藓Plagiochasma appendiculatum | [ |
表1 香豆素生物合成途径关键酶及其作用
Table 1 Key enzymes and their functions in coumarin biosynthetic pathway
名称 Name | 主要功能和作用 Main functions | 代表物种 Representative species | 参考文献 Reference |
---|---|---|---|
苯丙氨酸解氨酶Phenylalanine ammonia-lyase,PAL | 催化苯丙氨酸脱氨生成反式肉桂酸Catalyze phenylalanine into trans-cinnamic acid | 白花前胡P. praeruptorum | [ |
肉桂酸2-羟化酶Cinnamic acid 2-hydroxylase,C2H | 催化反式肉桂酸的邻羟基化Catalyze o-hydroxylation of trans-cinnamic acid | - | [ |
肉桂酸4-羟化酶Cinnamic acid 4-hydroxylase,C4H | 催化肉桂酸C4羟基化形成对-羟基香豆酸Catalyze aromatic ring-4 hydroxylation of cinnamic acid into p-coumaric acid | 紫花苜蓿Medicago sativa | [ |
4-香豆酸CoA连接酶4-coumarate CoA ligase,4CL | 催化肉桂酸及其羟基或甲氧基衍生物生成相应的肉桂酸CoA酯Convert cinnamic acid and its hydroxy or methoxy derivates to corresponding cinnamate CoA thioesters | 白花前胡P. praeruptorum | [ |
对香豆酰酯3’-羟化酶p-coumaroylshikimate/quinate 3-hydroxylase,C3’H | 催化香豆酰奎尼酸和香豆酰莽草酸分别生成咖啡酰奎尼酸和咖啡酰莽草酸Catalyze p-coumaroyl shikimic acid and p-coumaroyl quinic acid to caffeoyl shikimic acid and caffeoyl quinic acid | 芸香Ruta graveolens | [ |
香豆酸-3-羟基化酶4-coumarate-3-hydroxylase,C3H | 催化对香豆酸的3位C的羟基化生成咖啡酸Hydroxylate p-coumaroyl ester derivatives at the ring-3 position, leading to caffeic acid | 苎麻Boehmeria nivea | [ |
羟基肉桂酰基转移酶Hydroxycinnamoyl transferase,HCT | 以对香豆酰辅酶A等多种酰基辅酶A作为酰基供体,催化莽草酸、奎尼酸等形成酰胺化合物Catalyze the synthesis of the shikimate and quinate esters of p-coumaric acid, using a variety of acyl coenzyme A, such as coumaryl coenzyme A as acyl donors | 拟南芥A. thaliana | [ |
咖啡酸O-甲基转移酶Caffeic acid O-methyltransferase,COMT | 催化咖啡酸生成阿魏酸Catalyze caffeic acid to ferulic acid | 白花前胡P. praeruptorum | [ |
咖啡酰辅酶A O-甲基转移酶Caffeoyl CoA O-methyltransferase,CCoAOMT | 催化咖啡酰CoA形成阿魏酰CoA Catalyze caffeoyl CoA to feruyl CoA | 拟南芥A. thaliana | [ |
香豆酰CoA 2’-羟化酶p-coumaroyl CoA 2’-hydroxylase,C2’H | 催化对香豆酰CoA发生邻羟基化形成2,4-二羟基香豆酰CoA Catalyze o-hydroxylation of coumaryl CoA to 2, 4-dihydroxy coumaryl CoA | 芸香R. graveolens | [ |
阿魏酰-CoA 6’-羟化酶1 Feruloyl-CoA 6’-hydroxylase1,F6’H1 | 催化阿魏酰CoA芳香环脂肪侧链邻羟基化生成6-羟基阿魏酰CoA Catalyze hydroxylation of the fatty side chain of aromatic ring of feruyl-CoA to 6-hydroxylferuyl-CoA | 拟南芥A. thaliana | [ |
香豆素合酶Coumarin synthase,COSY | 催化顺-反异构化和内酯化 Catalyse trans-cis isomerization and lactonization | 拟南芥A. thaliana | [ |
UDP-葡萄糖基转移酶UDP-glucosyltransferase,UGT | 催化糖基化反应,将糖基从活化的供体分子转移到受体分子,形成相应的葡萄糖苷 Catalyzing the transfer of a glycosyl moiety from an activated donor to an acceptor molecule, forming corresponding glucoside | 拟南芥A. thaliana | [ |
β-葡萄糖苷酶β-glucosidases,BGLU | 催化碳水化合物部分和香豆素核心结构之间的β-葡萄糖苷键的水解,产生香豆素苷元形式 Catalyze the hydrolysis of the β-glucosidic bond between the carbohydrate portion and the coumarin core structure to produce the coumarin aglycone | 玉米Z. mays | [ |
东莨菪内酯8-羟化酶Scopoletin 8-hydroxylase,S8H | 催化东莨菪内酯的C8位羟基化转化为秦皮素 Catalyze hydroxylation of scopoletin at C8 position to fraxetin | 拟南芥A. thaliana | [ |
O-甲基转移酶O-methyltransferase,OMT | 催化七叶亭甲基化为东莨菪内酯Methylate esculetin generating scopoletin | 钝鳞紫背藓Plagiochasma appendiculatum | [ |
基因 Gene | 物种Species | ||
---|---|---|---|
拟南芥[ A. thaliana | 水稻[ O. sativa | 蒺藜苜蓿[ M. truncatula | |
PAL | 4 | 9 | 4 |
C3H | 8 | 15 | 2 |
C4H | 1 | 4 | 1 |
4CL | 11 | 10 | 13 |
CCoAOMT | 7 | 6 | 3 |
COMT | 10 | 3 | 16 |
HCT | 5 | 2 | 11 |
2OGD | 17 | 15 | 19 |
BGLU | 48 | 40 | 45 |
UGT | 121 | 178 | 243 |
表2 3种模式植物的香豆素合成基因家族统计
Table 2 Member statistics of coumarin synthesis gene families in three model plants
基因 Gene | 物种Species | ||
---|---|---|---|
拟南芥[ A. thaliana | 水稻[ O. sativa | 蒺藜苜蓿[ M. truncatula | |
PAL | 4 | 9 | 4 |
C3H | 8 | 15 | 2 |
C4H | 1 | 4 | 1 |
4CL | 11 | 10 | 13 |
CCoAOMT | 7 | 6 | 3 |
COMT | 10 | 3 | 16 |
HCT | 5 | 2 | 11 |
2OGD | 17 | 15 | 19 |
BGLU | 48 | 40 | 45 |
UGT | 121 | 178 | 243 |
图2 UGT基因家族在模式植物中的进化分析红色三角代表蒺藜苜蓿,黄色三角代表拟南芥,蓝色三角代表水稻The red triangle represents M. truncatula, the yellow triangle represents A. thaliana, and the blue triangle represents O. sativa.
Fig. 2 Phylogenetic analysis of the UGT gene family in three model plants
1 | Venugopala K N, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Research International, 2013, 2013: 1-14. |
2 | He X L. The mechanism of coumarin inhibiting germination and growth of Loliumperenne L.. Chongqing: Southwest University, 2019. |
何秀龙. 香豆素抑制黑麦草种子萌发及生长的机制. 重庆: 西南大学, 2019. | |
3 | Yang J, Wang L L, Zhang T J. Research progress on chemical constituents in plants of Melilotus Linn. and their pharmacological activities. Chinese Traditional and Herbal Drugs, 2014, 45(3): 447-454. |
杨杰, 王丽莉, 张铁军. 草木犀属植物化学成分及药理作用研究进展. 中草药, 2014, 45(3): 447-454. | |
4 | Jia C, Zhang J, Yu L, et al. Antifungal activity of coumarin against Candida albicans is related to apoptosis. Frontiers in Cellular Infection Microbiology, 2019, 8: 445. |
5 | Wei B, Zhou J, Xu J J, et al. Discovery of coumarin-derived imino sulfonates as a novel class of potential cardioprotective agents. European Journal of Medicinal Chemistry, 2019, 184: 111779. |
6 | Lou L L, Zhao P, Cheng Z Y, et al. A new coumarin from Juglans mandshurica Maxim induce apoptosis in hepatocarcinoma cells. Natural Product Research, 2019, 33(12): 1791-1793. |
7 | Wu C X, Zhao G Q, Liu D L, et al. Discovery and weed inhibition effects of coumarin as the predominant allelochemical of Yellow Sweetclover (Melilotus officinalis). International Journal of Agriculture, 2016, 18(1): 168-175. |
8 | Chen B X, Peng Y X, Gao J D, et al. Coumarin-induced delay of rice seed germination is mediated by suppression of abscisic acid catabolism and reactive oxygen species production. Frontiers in Plant Science, 2019, 10: 828. |
9 | Stringlis I A, Yu K, Feussner K, et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proceedings of the National Academy of Sciences of the USA, 2018, 115(22): E5213-E5222. |
10 | Bai Y, Li D, Zhou T, et al. Coumarins from the roots of Angelica dahurica with antioxidant and antiproliferative activities. Journal of Functional Foods, 2016, 20: 453-462. |
11 | Kai K, Shimizu B, Mizutani M, et al. Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry, 2006, 67(4): 379-386. |
12 | Lončarić M, Gašo-Sokač D, Jokić S, et al. Recent advances in the synthesis of coumarin derivatives from different starting materials. Biomolecules, 2020, 10(1): 151. |
13 | Stringlis I A, de Jonge R, Pieterse C M J. The age of coumarins in plant-microbe interactions. Plant Cell Physiology, 2019, 60(7): 1405-1419. |
14 | Zhang C, Gao Y, Peng Y, et al. A new coumarin isolated from the roots of Heracleum dissectum Ledeb. Natural Product Research, 2019, 14(1): 1-6. |
15 | Li X Y, Zu Y Y, Ning W, et al. A new xanthyletin-type coumarin from the roots of Peucedanum praeruptorum. Journal of Asian Natural Products Research, 2020, 22(3): 287-294. |
16 | Seo W D, Kim J Y, Ryu H W, et al. Identification and characterisation of coumarins from the roots of Angelica dahurica and their inhibitory effects against cholinesterase. Journal of Functional Foods, 2013, 5(3): 1421-1431. |
17 | Iranshahi M, Kalategi F, Sahebkar A, et al. New sesquiterpene coumarins from the roots of Ferula flabelliloba. Pharmaceutical Biology, 2010, 48(2): 217-220. |
18 | Peng W W, Zheng Y Q, Chen Y S, et al. Coumarins from roots of Clausena excavata. Journal of Asian Natural Products Research, 2013, 15(3): 215-220. |
19 | Naseri M, Monsef Esfehani H, Saeidnia S, et al. Antioxidative coumarins from the roots of Ferulago subvelutina. Asian Journal of Chemistry, 2013, 25(4): 1875-1878. |
20 | Brown S A. Biosynthesis of coumarin and herniarin in lavender. Science, 1962, 137(3534): 977-978. |
21 | Sakunpak A, Matsunami K, Otsuka H, et al. Isolation of new monoterpene coumarins from Micromelum minutum leaves and their cytotoxic activity against Leishmania major and cancer cells. Food Chemistry, 2013, 139(1/2/3/4): 458-463. |
22 | Petruľová-Poracká V, Repčák M, Vilková M, et al. Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chemistry, 2013, 141(1): 54-59. |
23 | Aziz S, Sukari M, Rahmani M, et al. Coumarins from Murraya paniculata (Rutaceae) [koumarin daripada murraya paniculata (Rutaceae)]. The Malaysian Journal of Analytical Sciences, 2010, 14(1): 1-5. |
24 | Sun J, Yue Y D, Tang F, et al. Coumarins from the leaves of Bambusa pervariabilis McClure. Journal of Asian Natural Products Research, 2010, 12(3): 248-251. |
25 | Li Z L, Li Y, Qin N B, et al. Four new coumarins from the leaves of Calophyllum inophyllum. Phytochemistry Letters, 2016, 16: 203-206. |
26 | Sowa P, Tarapatskyy M, Puchalski C, et al. A novel honey-based product enriched with coumarin from Melilotus flowers. Journal of Food Measurement Characterization, 2019, 13(3): 1748-1754. |
27 | Joshi K R, Devkota H P, Yahara S. Chemical analysis of flowers of Bombax ceiba from Nepal. Natural Product Communications, 2013, 8(5): 583-584. |
28 | Joselin J, Brintha T S S, Florence A R, et al. Screening of select ornamental flowers of the family Apocynaceae for phytochemical constituents. Asian Pacific Journal of Tropical Disease, 2012, 2: S260-S264. |
29 | Sukumaran S, Kiruba S, Mahesh M, et al. Phytochemical constituents and antibacterial efficacy of the flowers of Peltophorum pterocarpum (DC.) Baker ex Heyne. Asian Pacific Journal of Tropical Medicine, 2011, 4(9): 735-738. |
30 | Kicel A, Wolbis M. Coumarins from the flowers of Trifolium repens. Chemistry of Natural Compounds, 2012, 48(1): 130-132. |
31 | Dugrand A, Olry A, Duval T, et al. Coumarin and furanocoumarin quantitation in citrus peel via ultraperformance liquid chromatography coupled with mass spectrometry (UPLC-MS). Journal of Agricultural Food Chemistry, 2013, 61(45): 10677-10684. |
32 | Dhanavade M J, Jalkute C B, Ghosh J S, et al. Study antimicrobial activity of lemon (Citrus lemon L.) peel extract. British Journal of Pharmacology Toxicology, 2011, 2(3): 119-122. |
33 | Miyake Y, Hiramitsu M. Isolation and extraction of antimicrobial substances against oral bacteria from lemon peel. Journal of Food Science Technology, 2011, 48(5): 635-639. |
34 | Razavi S M, Imanzadeh G, Davari M. Coumarins from Zosima absinthifolia seeds, with allelopatic effects. EurAsian Journal of BioSciences, 2010, 4(1): 17-22. |
35 | Li G, Li X, Cao L, et al. Sesquiterpene coumarins from seeds of Ferula sinkiangensis. Fitoterapia, 2015, 103: 222-226. |
36 | Carpinella M C, Ferrayoli C G, Palacios S M. Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. Journal of Agricultural Food Chemistry, 2005, 53(8): 2922-2927. |
37 | Tsai H H, Rodríguez-Celma J, Lan P, et al. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiology, 2018, 177(1): 194-207. |
38 | Nair R M, Whittall A, Hughes S J, et al. Variation in coumarin content of Melilotus species grown in South Australia. New Zealand Journal of Agricultural Research, 2010, 53(3): 201-213. |
39 | Zhang J Y, Di H Y, Luo K, et al. Coumarin content, morphological variation, and molecular phylogenetics of Melilotus. Molecules, 2018, 23(4): 810. |
40 | Zhu H, Fan J. HPLC determination of coumarin in Melilotus. Chinese Journal of Pharmaceutical Analysis, 2008, 28(12): 2111-2113. |
朱宏, 樊君. HPLC法测定草木樨中香豆素的含量. 药物分析杂志, 2008, 28(12): 2111-2113. | |
41 | Tang C N. Study on extraction, separation and putification technology of coumarin from Melilotus. Xi’an: Northwest University, 2010. |
汤春妮. 草木樨香豆素的提取、分离纯化工艺研究. 西安: 西北大学, 2010. | |
42 | Lv X L, Xu G B, Xu L M, et al. Quality standard of total coumarin extract of Peucedani Radix. Acta Chinese Medicine and Pharmacology, 2020, 48(2): 43-46. |
吕新林, 徐国兵, 许雷鸣, 等. 前胡总香豆素提取物质量标准研究. 中医药学报, 2020, 48(2): 43-46. | |
43 | Hao Y Y. Determination of the content of coumarins in grapefruit skin of Citrus maxima by Liquid Chromatography-Mass Spectrometry. Food Research and Development, 2019, 40(16): 146-152. |
郝元元. LC-MS/MS法测定柚子皮中香豆素类物质组成及含量. 食品研究与开发, 2019, 40(16): 146-152. | |
44 | Xin H, Wang H X, Liu H Z. Comparision on the content of coumarin in Glehnia littoralis during different harvest periods. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(2): 379-383. |
辛华, 王海霞, 刘汉柱. 不同采收期珊瑚菜中香豆素含量的比较. 西北植物学报, 2009, 29(2): 379-383. | |
45 | Araniti F, Scognamiglio M, Chambery A, et al. Highlighting the effects of coumarin on adult plants of Arabidopsis thaliana (L.) Heynh. by an integrated-omic approach. Journal of Plant Physiology, 2017, 213: 30-41. |
46 | Saleh A M, Kebeish R. Coumarin impairs redox homeostasis in wheat aleurone layers. Journal of Plant Research, 2018, 131(1): 157-163. |
47 | Lupini A, Araniti F, Mauceri A, et al. Coumarin enhances nitrate uptake in maize roots through modulation of plasma membrane H+‐ATPase activity. Plant Biology, 2018, 20(2): 390-398. |
48 | Chong J, Baltz R, Schmitt C, et al. Downregulation of a pathogen-responsive tobacco UDP-Glc: Phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. The Plant Cell, 2002, 14(5): 1093-1107. |
49 | Grana E, Costas Gil A, Longueira S, et al. Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. Journal of Plant Physiology, 2017, 218: 45-55. |
50 | Doll S, Kuhlmann M, Rutten T, et al. Accumulation of the coumarin scopolin under abiotic stress conditions is mediated by the Arabidopsis thaliana THO/TREX complex. The Plant Journal, 2018, 93(3): 431-444. |
51 | Rajniak J, Giehl R F, Chang E, et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nature Chemical Biology, 2018, 14(5): 442-450. |
52 | Chutia R, Abel S, Ziegler J. Iron and phosphate deficiency regulators concertedly control coumarin profiles in Arabidopsis thaliana roots during iron, phosphate, and combined deficiencies. Frontiers in Plant Science, 2019, 10: 113. |
53 | Beyer S F, Beesley A, Rohmann P F W, et al. The Arabidopsis non-host defence-associated coumarin scopoletin protects soybean from Asian soybean rust. The Plant Journal, 2019, 99(3): 397-413. |
54 | Santhanam R, Menezes R C, Grabe V, et al. A suite of complementary biocontrol traits allows a native consortium of root‐associated bacteria to protect their host plant from a fungal sudden‐wilt disease. Molecular Ecology, 2019, 28(5): 1154-1169. |
55 | Liu B, Raeth T, Beuerle T, et al. A novel 4-hydroxycoumarin biosynthetic pathway. Plant Molecular Biology, 2010, 72(1/2): 17-25. |
56 | Luo K, Jahufer M Z Z, Zhao H, et al. Genetic improvement of key agronomic traits in Melilotus albus. Crop Science, 2018, 58(1): 285-294. |
57 | Ranjeva R, Alibert G, Boudet A M. Metabolisme des composes phenoliques chez le Petunia. V. Utilisation de la phenylalanine par des chloroplastes isoles. Plant Science Letters, 1977, 10(3): 225-234. |
58 | Brown S A. Biosythesis of the coumarinsⅢ.The role of glycosides in the formation of coumarin by Bierochloe odorata. Canadian Journal of Biochemistry and Physiology, 1962, 40(5): 607-618. |
59 | Shimizu B. 2-Oxoglutarate-dependent dioxygenases in the biosynthesis of simple coumarins. Frontiers in Plant Science, 2014, 5: 549. |
60 | Vialart G, Hehn A, Olry A, et al. A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2'-hydroxylase activity (C2'H): A missing step in the synthesis of umbelliferone in plants. The Plant Journal, 2012, 70(3): 460-470. |
61 | Vanholme R, Sundin L, Seetso K C, et al. COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins. Nature Plants, 2019, 5(10): 1066-1075. |
62 | Karamat F, Olry A, Doerper S, et al. CYP98A22, a phenolic ester 3'-hydroxylase specialized in the synthesis of chlorogenic acid, as a new tool for enhancing the furanocoumarin concentration in Ruta graveolens. BMC Plant Biology, 2012, 12: 152. |
63 | Bourgaud F, Hehn A, Larbat R, et al. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes. Phytochemistry Reviews, 2006, 5(2/3): 293-308. |
64 | Poulton J E, McRee D E, Conn E E. Intracellular localization of two enzymes involved in coumarin biosynthesis in Melilotus alba. Plant Physiology, 1980, 65(2): 171-175. |
65 | Haskins F A, Williams L G, Gorz H. Light-induced trans to cis conversion of β-D-glucosyl o-hydroxycinnamic acid in Melilotus alba leaves. Plant Physiology, 1964, 39(5): 777-781. |
66 | Brown S A. Biosynthetic studies on coumarins. Planta Medica, 1979, 36(8): 299-310. |
67 | Alber A V, Renault H, Basilio L A, et al. Evolution of coumaroyl conjugate 3-hydroxylases in land plants: Lignin biosynthesis and defense. The Plant Journal, 2019, 99(5): 924-936. |
68 | Vogt T. Phenylpropanoid biosynthesis. Molecular Plant, 2010, 3(1): 2-20. |
69 | Kai K, Mizutani M, Kawamura N, et al. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2‐oxoglutarate‐dependent dioxygenase in Arabidopsis thaliana. The Plant Journal, 2008, 55(6): 989-999. |
70 | Siwinska J, Siatkowska K, Olry A, et al. Scopoletin 8-hydroxylase: A novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. Journal of Experimental Botany, 2018, 69(7): 1735-1748. |
71 | Brown S A. Biosynthesis of 6, 7-dihydroxycoumarin in Cichorium intybus. Canadian Journal of Biochemistry Cell Biology, 1985, 63(4): 292-295. |
72 | Bayoumi S A, Rowan M G, Beeching J R, et al. Investigation of biosynthetic pathways to hydroxycoumarins during post‐harvest physiological deterioration in Cassava roots by using stable isotope labelling. Combining Chemistry and Biology, 2008, 9(18): 3013-3022. |
73 | Luo K, Wu F, Zhang D Y, et al. Transcriptomic profiling of Melilotus albus near-isogenic lines contrasting for coumarin content. Scientific Reports, 2017, 7: 4577. |
74 | Wu F, Luo K, Yan Z, et al. Analysis of miRNAs and their target genes in five Melilotus albus NILs with different coumarin content. Scientific Reports, 2018, 8: 14138. |
75 | Sui Z, Luo J, Yao R, et al. Functional characterization and correlation analysis of phenylalanine ammonia-lyase (PAL) in coumarin biosynthesis from Peucedanum praeruptorum Dunn. Phytochemistry, 2019, 158: 35-45. |
76 | Fahrendorf T, Dixon R A. Stress responses in alfalfa (Medicago sativa L.). XVIII: Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Archives of Biochemistry and Biophysics, 1993, 305(2): 509-515. |
77 | Liu T, Yao R, Zhao Y, et al. Cloning, functional characterization and site-directed mutagenesis of 4-coumarate: Coenzyme A ligase (4CL) involved in coumarin biosynthesis in Peucedanum praeruptorum Dunn. Frontiers in Plant Science, 2017, 8: 4. |
78 | Yuan Y M, Chen J R, Liu F, et al. Gene cloning, bioinformatics and expression analysis of C3H gene from Boehmeria nivea L.. Chinese Agricultural Science Bulletin, 2017, 33(32): 21-27. |
袁有美, 陈建荣, 刘芳, 等. 苎麻C3H基因的克隆、生物信息学分析及表达分析. 中国农学通报, 2017, 33(32): 21-27. | |
79 | Besseau S, Hoffmann L, Geoffroy P, et al. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell, 2007, 19(1): 148-162. |
80 | Zhao Y, Wang N, Sui Z, et al. The molecular and structural basis of O-methylation reaction in coumarin biosynthesis in Peucedanum praeruptorum Dunn. International Journal of Molecular Sciences, 2019, 20(7): 1533. |
81 | Li Y, Baldauf S, Lim E K, et al. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. Journal of Biological Chemistry, 2001, 276(6): 4338-4343. |
82 | Xu R X, Gao S, Zhao Y, et al. Functional characterization of a Mg2+-dependent O-methyltransferase with coumarin as preferred substrate from the liverwort Plagiochasma appendiculatum. Plant Physiology and Biochemistry, 2016, 106(9): 269-277. |
83 | Zhang X, Liu C J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Molecular Plant, 2015, 8(1): 17-27. |
84 | Gui J, Shen J, Li L. Functional characterization of evolutionarily divergent 4-coumarate: Coenzyme A ligases in rice. Plant Physiology, 2011, 157(2): 574-586. |
85 | Kawai Y, Ono E, Mizutani M. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. The Plant Journal, 2014, 78(2): 328-343. |
86 | Matsumoto S, Mizutani M, Sakata K, et al. Molecular cloning and functional analysis of the ortho-hydroxylases of p-coumaroyl coenzyme A/feruloyl coenzyme A involved in formation of umbelliferone and scopoletin in sweet potato, Ipomoea batatas (L.) Lam. Phytochemistry, 2012, 74: 49-57. |
87 | Ahn Y O, Shimizu B I, Sakata K, et al. Scopolin-hydrolyzing β-glucosidases in roots of Arabidopsis. Plant Cell Physiology, 2010, 51(1): 132-143. |
88 | Schmidt S, Rainieri S, Witte S, et al. Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Applied and Environmental Microbiology, 2011, 77(5): 1751-1757. |
89 | Yonekura S K. Functional genomics of family 1 glycosyltransferases in Arabidopsis. Plant Biotechnology, 2009, 26(3): 267-274. |
90 | Lim E K, Li Y, Parr A, et al. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. Journal of Biological Chemistry, 2001, 276(6): 4344-4349. |
91 | Cheng C Y, Krishnakumar V, Chan A P, et al. Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. The Plant Journal, 2017, 89(4): 789-804. |
92 | Shu O, Wei Z, John H, et al. The TIGR rice genome annotation resource: Improvements and new features. Nucleic Acids Research, 2007, 35(suppl_1): D883-D887. |
93 | Tang H, Krishnakumar V, Bidwell S, et al. An improved genome release (version Mt 4.0) for the model legume Medicago truncatula. BMC Genomics, 2014, 15(1): 1-14. |
94 | Caputi L, Malnoy M, Goremykin V, et al. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. The Plant Journal, 2012, 69(6): 1030-1042. |
95 | Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: Characterization of a supergene family. Trends in Plant Science, 2000, 5(9): 380-386. |
96 | Lim E K, Bowles D J. A class of plant glycosyltransferases involved in cellular homeostasis. The EMBO Journal, 2004, 23(15): 2915-2922. |
97 | Jones P, Vogt T. Glycosyltransferases in secondary plant metabolism: Tranquilizers and stimulant controllers. Planta, 2001, 213(2): 164-174. |
98 | Xie L F, Ren C H, Zhang B, et al. Plant UDP-glycosyltransferases in flavonoids biosynthesis. Acta Horticulturae Sinica, 2019, 46(9): 1655-1669. |
解林峰, 任传宏, 张波, 等. 植物类黄酮生物合成相关UDP-糖基转移酶研究进展. 园艺学报, 2019, 46(9): 1655-1669. | |
99 | Vogt T. Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis. Planta, 2002, 214(3): 492-495. |
100 | Osmani S A, Bak S, Moller B L. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry, 2009, 70(3): 325-347. |
101 | Krishnamurthy P, Tsukamoto C, Ishimoto M. Reconstruction of the evolutionary histories of UGT gene superfamily in Legumes clarifies the functional divergence of duplicates in specialized metabolism. International Journal of Molecular Sciences, 2020, 21(5): 1855. |
[1] | 鲍根生, 俞永飞, 李春杰. 高寒草甸优势禾草-异针茅内生真菌的分离与鉴定[J]. 草业学报, 2019, 28(8): 150-160. |
[2] | 姚丹丹, 王婧怡, 周倩, 汤前, 赵国琦, 邬彩霞. 香豆素对多花黑麦草种子萌发和幼苗生长化感作用的机理研究[J]. 草业学报, 2017, 26(2): 136-145. |
[3] | 张军,宋丽莉,郭东林,郭长虹,束永俊. MADS-box基因家族在蒺藜苜蓿的全基因组分析[J]. 草业学报, 2014, 23(6): 233-241. |
[4] | 邬彩霞,刘苏娇,赵国琦. 黄花草木樨水浸提液中潜在化感物质的分离、鉴定[J]. 草业学报, 2014, 23(5): 184-192. |
[5] | 张春,凡星,沙莉娜,康厚扬,张海琴,周永红. 基于叶绿体trnL-F序列对广义披碱草属物种的系统进化研究[J]. 草业学报, 2011, 20(3): 162-173. |
[6] | 刘永红,张丽静,张洪荣,傅华. △12-脂肪酸脱氢酶及其编码基因研究进展[J]. 草业学报, 2011, 20(3): 256-267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||